9
26
(K9a
15
)
A knot diagram
1
Linearized knot diagam
5 6 9 8 7 2 1 3 4
Solving Sequence
3,8
9 4 5 1 7 6 2
c
8
c
3
c
4
c
9
c
7
c
5
c
2
c
1
, c
6
Ideals for irreducible components
2
of X
par
I
u
1
= hu
23
+ u
22
+ ··· 2u
3
+ 1i
* 1 irreducible components of dim
C
= 0, with total 23 representations.
1
The image of knot diagram is generated by the software Draw programme developed by An-
drew Bartholomew(http://www.layer8.co.uk/maths/draw/index.htm#Running-draw), where we modi-
fied some parts for our purpose(https://github.com/CATsTAILs/LinksPainter).
2
All coefficients of polynomials are rational numbers. But the coefficients are sometimes approximated
in decimal forms when there is not enough margin.
1
I. I
u
1
= hu
23
+ u
22
+ · · · 2u
3
+ 1i
(i) Arc colorings
a
3
=
0
u
a
8
=
1
0
a
9
=
1
u
2
a
4
=
u
u
3
+ u
a
5
=
u
3
+ 2u
u
3
+ u
a
1
=
u
2
+ 1
u
4
2u
2
a
7
=
u
6
3u
4
+ 2u
2
+ 1
u
8
+ 4u
6
4u
4
a
6
=
u
17
8u
15
+ 25u
13
36u
11
+ 19u
9
+ 4u
7
2u
5
4u
3
+ u
u
19
+ 9u
17
32u
15
+ 55u
13
43u
11
+ 9u
9
+ 4u
5
u
3
+ u
a
2
=
u
10
+ 5u
8
8u
6
+ 3u
4
+ u
2
+ 1
u
10
+ 4u
8
5u
6
+ 2u
4
u
2
a
2
=
u
10
+ 5u
8
8u
6
+ 3u
4
+ u
2
+ 1
u
10
+ 4u
8
5u
6
+ 2u
4
u
2
(ii) Obstruction class = 1
(iii) Cusp Shapes = 4u
20
+ 36u
18
4u
17
132u
16
+ 32u
15
+ 244u
14
100u
13
220u
12
+ 144u
11
+ 60u
10
80u
9
+ 24u
8
+ 4u
6
12u
5
8u
4
+ 20u
3
4u
2
+ 2
2
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
u
23
+ u
22
+ ··· 8u 5
c
2
, c
6
u
23
u
22
+ ··· + 2u 1
c
3
, c
8
, c
9
u
23
u
22
+ ··· 2u
3
1
c
4
u
23
+ 3u
22
+ ··· + 4u + 1
c
5
u
23
+ 11u
22
+ ··· 2u
2
1
c
7
u
23
5u
22
+ ··· + 32u 7
3
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
y
23
5y
22
+ ··· + 264y 25
c
2
, c
6
y
23
+ 11y
22
+ ··· 2y
2
1
c
3
, c
8
, c
9
y
23
21y
22
+ ··· 6y
2
1
c
4
y
23
y
22
+ ··· + 4y 1
c
5
y
23
+ 3y
22
+ ··· 4y 1
c
7
y
23
+ 7y
22
+ ··· 404y 49
4
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 1.070060 + 0.182203I
1.02537 + 3.60580I 1.11445 4.48858I
u = 1.070060 0.182203I
1.02537 3.60580I 1.11445 + 4.48858I
u = 1.15018
1.95316 5.52610
u = 0.285113 + 0.703745I
2.00141 + 7.02777I 0.43599 7.34039I
u = 0.285113 0.703745I
2.00141 7.02777I 0.43599 + 7.34039I
u = 0.625021 + 0.336059I
0.61995 3.26242I 3.19624 + 2.26815I
u = 0.625021 0.336059I
0.61995 + 3.26242I 3.19624 2.26815I
u = 0.284234 + 0.630366I
0.22041 2.29224I 3.82667 + 3.81893I
u = 0.284234 0.630366I
0.22041 + 2.29224I 3.82667 3.81893I
u = 0.143415 + 0.670993I
3.74248 0.30335I 3.41146 0.40480I
u = 0.143415 0.670993I
3.74248 + 0.30335I 3.41146 + 0.40480I
u = 1.347540 + 0.251864I
0.95696 3.02476I 1.87787 + 2.21609I
u = 1.347540 0.251864I
0.95696 + 3.02476I 1.87787 2.21609I
u = 0.405548 + 0.414027I
1.014040 0.946726I 6.43633 + 4.33310I
u = 0.405548 0.414027I
1.014040 + 0.946726I 6.43633 4.33310I
u = 1.41968 + 0.16903I
6.78087 + 3.16234I 9.66460 3.46689I
u = 1.41968 0.16903I
6.78087 3.16234I 9.66460 + 3.46689I
u = 1.42608 + 0.11950I
5.64121 + 1.73636I 7.79313 2.46590I
u = 1.42608 0.11950I
5.64121 1.73636I 7.79313 + 2.46590I
u = 1.41107 + 0.24900I
5.63952 + 5.52406I 8.27222 3.52157I
u = 1.41107 0.24900I
5.63952 5.52406I 8.27222 + 3.52157I
u = 1.41586 + 0.27635I
3.43142 10.59580I 5.03092 + 7.47788I
u = 1.41586 0.27635I
3.43142 + 10.59580I 5.03092 7.47788I
5
II. u-Polynomials
Crossings u-Polynomials at each crossing
c
1
u
23
+ u
22
+ ··· 8u 5
c
2
, c
6
u
23
u
22
+ ··· + 2u 1
c
3
, c
8
, c
9
u
23
u
22
+ ··· 2u
3
1
c
4
u
23
+ 3u
22
+ ··· + 4u + 1
c
5
u
23
+ 11u
22
+ ··· 2u
2
1
c
7
u
23
5u
22
+ ··· + 32u 7
6
III. Riley Polynomials
Crossings Riley Polynomials at each crossing
c
1
y
23
5y
22
+ ··· + 264y 25
c
2
, c
6
y
23
+ 11y
22
+ ··· 2y
2
1
c
3
, c
8
, c
9
y
23
21y
22
+ ··· 6y
2
1
c
4
y
23
y
22
+ ··· + 4y 1
c
5
y
23
+ 3y
22
+ ··· 4y 1
c
7
y
23
+ 7y
22
+ ··· 404y 49
7