11n
4
(K11n
4
)
A knot diagram
1
Linearized knot diagam
5 1 7 2 3 9 4 11 6 1 9
Solving Sequence
1,5
2 3 6
4,9
11 8 7 10
c
1
c
2
c
5
c
4
c
11
c
8
c
7
c
10
c
3
, c
6
, c
9
Ideals for irreducible components
2
of X
par
I
u
1
= h9579649u
28
+ 28051230u
27
+ ··· + 44628149b 26156718,
402165u
28
18012803u
27
+ ··· + 44628149a 25970340, u
29
+ 2u
28
+ ··· u + 1i
I
u
2
= hb 1, u
4
u
3
+ 2u
2
+ a u + 1, u
5
u
4
+ 2u
3
u
2
+ u 1i
* 2 irreducible components of dim
C
= 0, with total 34 representations.
1
The image of knot diagram is generated by the software Draw programme developed by An-
drew Bartholomew(http://www.layer8.co.uk/maths/draw/index.htm#Running-draw), where we modi-
fied some parts for our purpose(https://github.com/CATsTAILs/LinksPainter).
2
All coefficients of polynomials are rational numbers. But the coefficients are sometimes approximated
in decimal forms when there is not enough margin.
1
I.
I
u
1
= h9.58 × 10
6
u
28
+ 2.81 × 10
7
u
27
+ · · · + 4.46 × 10
7
b 2.62 × 10
7
, 4.02 ×
10
5
u
28
1.80 × 10
7
u
27
+ · · · + 4.46 × 10
7
a 2.60 × 10
7
, u
29
+ 2u
28
+ · · · u + 1i
(i) Arc colorings
a
1
=
1
0
a
5
=
0
u
a
2
=
1
u
2
a
3
=
u
2
+ 1
u
2
a
6
=
u
5
2u
3
u
u
5
+ u
3
+ u
a
4
=
u
u
3
+ u
a
9
=
0.00901146u
28
+ 0.403620u
27
+ ··· + 0.0183714u + 0.581927
0.214655u
28
0.628555u
27
+ ··· + 0.800456u + 0.586104
a
11
=
0.250701u
28
0.243034u
27
+ ··· + 0.726970u + 1.25839
0.141381u
28
0.485781u
27
+ ··· + 0.798176u + 0.655586
a
8
=
1.26592u
28
+ 2.07814u
27
+ ··· 1.78235u 0.0609626
0.853451u
28
1.71445u
27
+ ··· + 0.995441u 0.861036
a
7
=
0.667701u
28
+ 1.07191u
27
+ ··· 2.17896u 0.0640826
0.263489u
28
0.531459u
27
+ ··· + 0.603619u 0.667701
a
10
=
0.109320u
28
+ 0.242748u
27
+ ··· 0.0712062u + 0.602809
0.141381u
28
0.485781u
27
+ ··· + 0.798176u + 0.655586
a
10
=
0.109320u
28
+ 0.242748u
27
+ ··· 0.0712062u + 0.602809
0.141381u
28
0.485781u
27
+ ··· + 0.798176u + 0.655586
(ii) Obstruction class = 1
(iii) Cusp Shapes =
2569949
44628149
u
28
167545923
44628149
u
27
+ ···
46388860
44628149
u +
58164951
44628149
2
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
4
u
29
+ 2u
28
+ ··· u + 1
c
2
u
29
+ 12u
28
+ ··· 5u 1
c
3
, c
7
u
29
+ 2u
28
+ ··· + u + 1
c
5
u
29
2u
28
+ ··· 65u + 17
c
6
, c
9
u
29
5u
28
+ ··· + 24u
2
+ 32
c
8
, c
11
u
29
+ 6u
28
+ ··· + 5u + 1
c
10
u
29
36u
28
+ ··· 183u 1
3
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
4
y
29
+ 12y
28
+ ··· 5y 1
c
2
y
29
+ 12y
28
+ ··· 89y 1
c
3
, c
7
y
29
+ 30y
27
+ ··· 5y 1
c
5
y
29
+ 12y
28
+ ··· 13285y 289
c
6
, c
9
y
29
+ 33y
28
+ ··· 1536y 1024
c
8
, c
11
y
29
36y
28
+ ··· 183y 1
c
10
y
29
80y
28
+ ··· + 16377y 1
4
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.387233 + 0.859940I
a = 0.839842 0.200433I
b = 0.0183680 0.0952600I
0.34137 + 1.65783I 2.51721 4.37356I
u = 0.387233 0.859940I
a = 0.839842 + 0.200433I
b = 0.0183680 + 0.0952600I
0.34137 1.65783I 2.51721 + 4.37356I
u = 0.525029 + 0.781903I
a = 1.45815 1.69363I
b = 0.960834 0.144408I
1.78487 + 1.57609I 0.9666 16.5900I
u = 0.525029 0.781903I
a = 1.45815 + 1.69363I
b = 0.960834 + 0.144408I
1.78487 1.57609I 0.9666 + 16.5900I
u = 0.654583 + 0.675856I
a = 0.197062 0.780511I
b = 0.929333 + 1.022590I
3.12622 + 1.43345I 4.04144 2.82912I
u = 0.654583 0.675856I
a = 0.197062 + 0.780511I
b = 0.929333 1.022590I
3.12622 1.43345I 4.04144 + 2.82912I
u = 0.925881 + 0.518414I
a = 1.81441 + 0.23795I
b = 1.71997 0.32324I
11.74770 + 6.59261I 3.06245 2.55361I
u = 0.925881 0.518414I
a = 1.81441 0.23795I
b = 1.71997 + 0.32324I
11.74770 6.59261I 3.06245 + 2.55361I
u = 0.937398 + 0.500154I
a = 1.79802 0.06455I
b = 1.70627 0.02414I
11.61340 + 1.70244I 3.44440 1.84569I
u = 0.937398 0.500154I
a = 1.79802 + 0.06455I
b = 1.70627 + 0.02414I
11.61340 1.70244I 3.44440 + 1.84569I
5
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.662767 + 0.848656I
a = 1.81457 1.32278I
b = 1.81677 0.13637I
5.01547 2.56835I 6.29777 + 3.45072I
u = 0.662767 0.848656I
a = 1.81457 + 1.32278I
b = 1.81677 + 0.13637I
5.01547 + 2.56835I 6.29777 3.45072I
u = 0.567900 + 0.933831I
a = 0.28660 + 1.95388I
b = 0.704163 + 0.280595I
1.23273 + 2.84215I 0.371066 + 0.581587I
u = 0.567900 0.933831I
a = 0.28660 1.95388I
b = 0.704163 0.280595I
1.23273 2.84215I 0.371066 0.581587I
u = 0.043975 + 0.873551I
a = 1.118610 + 0.586417I
b = 0.157858 + 0.616140I
1.21438 + 1.50101I 6.11641 3.93982I
u = 0.043975 0.873551I
a = 1.118610 0.586417I
b = 0.157858 0.616140I
1.21438 1.50101I 6.11641 + 3.93982I
u = 0.637441 + 0.973302I
a = 1.34495 0.55786I
b = 0.69848 1.23040I
2.23506 6.49074I 1.39267 + 8.34462I
u = 0.637441 0.973302I
a = 1.34495 + 0.55786I
b = 0.69848 + 1.23040I
2.23506 + 6.49074I 1.39267 8.34462I
u = 0.461488 + 1.163620I
a = 0.358541 + 0.419840I
b = 0.655831 0.154039I
4.83578 4.15032I 10.94337 + 1.86325I
u = 0.461488 1.163620I
a = 0.358541 0.419840I
b = 0.655831 + 0.154039I
4.83578 + 4.15032I 10.94337 1.86325I
6
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.017652 + 1.279430I
a = 0.248173 0.176688I
b = 1.56169 0.18501I
4.96946 + 4.25609I 1.11871 2.71437I
u = 0.017652 1.279430I
a = 0.248173 + 0.176688I
b = 1.56169 + 0.18501I
4.96946 4.25609I 1.11871 + 2.71437I
u = 0.697556 + 1.121820I
a = 1.35862 + 1.61660I
b = 1.69014 + 0.41795I
9.9003 12.5531I 0.87648 + 6.84593I
u = 0.697556 1.121820I
a = 1.35862 1.61660I
b = 1.69014 0.41795I
9.9003 + 12.5531I 0.87648 6.84593I
u = 0.697068 + 1.137050I
a = 0.98961 1.53355I
b = 1.66331 0.08384I
9.66493 + 4.29038I 1.47355 2.52385I
u = 0.697068 1.137050I
a = 0.98961 + 1.53355I
b = 1.66331 + 0.08384I
9.66493 4.29038I 1.47355 + 2.52385I
u = 0.659229
a = 1.11847
b = 0.442580
1.67720 6.86830
u = 0.281024 + 0.265729I
a = 1.012610 0.151234I
b = 0.969423 + 0.291280I
1.86776 + 0.92254I 4.20343 0.65997I
u = 0.281024 0.265729I
a = 1.012610 + 0.151234I
b = 0.969423 0.291280I
1.86776 0.92254I 4.20343 + 0.65997I
7
II. I
u
2
= hb 1, u
4
u
3
+ 2u
2
+ a u + 1, u
5
u
4
+ 2u
3
u
2
+ u 1i
(i) Arc colorings
a
1
=
1
0
a
5
=
0
u
a
2
=
1
u
2
a
3
=
u
2
+ 1
u
2
a
6
=
u
4
u
2
1
u
4
u
3
+ u
2
+ 1
a
4
=
u
u
3
+ u
a
9
=
u
4
+ u
3
2u
2
+ u 1
1
a
11
=
u
4
+ u
3
2u
2
+ u
1
a
8
=
1
0
a
7
=
u
4
u
2
1
u
4
u
3
+ u
2
+ 1
a
10
=
u
4
+ u
3
2u
2
+ u 1
1
a
10
=
u
4
+ u
3
2u
2
+ u 1
1
(ii) Obstruction class = 1
(iii) Cusp Shapes = 3u
4
+ 3u
3
4u
2
+ 8u 3
8
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
u
5
u
4
+ 2u
3
u
2
+ u 1
c
2
u
5
+ 3u
4
+ 4u
3
+ u
2
u 1
c
3
u
5
+ u
4
2u
3
u
2
+ u 1
c
4
u
5
+ u
4
+ 2u
3
+ u
2
+ u + 1
c
5
, c
7
u
5
u
4
2u
3
+ u
2
+ u + 1
c
6
, c
9
u
5
c
8
, c
10
(u + 1)
5
c
11
(u 1)
5
9
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
4
y
5
+ 3y
4
+ 4y
3
+ y
2
y 1
c
2
y
5
y
4
+ 8y
3
3y
2
+ 3y 1
c
3
, c
5
, c
7
y
5
5y
4
+ 8y
3
3y
2
y 1
c
6
, c
9
y
5
c
8
, c
10
, c
11
(y 1)
5
10
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
2
1(vol +
1CS) Cusp shape
u = 0.339110 + 0.822375I
a = 0.428550 + 1.039280I
b = 1.00000
1.31583 1.53058I 1.50865 + 9.87103I
u = 0.339110 0.822375I
a = 0.428550 1.039280I
b = 1.00000
1.31583 + 1.53058I 1.50865 9.87103I
u = 0.766826
a = 1.30408
b = 1.00000
0.756147 3.17260
u = 0.455697 + 1.200150I
a = 0.276511 + 0.728237I
b = 1.00000
4.22763 + 4.40083I 0.92237 5.80708I
u = 0.455697 1.200150I
a = 0.276511 0.728237I
b = 1.00000
4.22763 4.40083I 0.92237 + 5.80708I
11
III. u-Polynomials
Crossings u-Polynomials at each crossing
c
1
(u
5
u
4
+ 2u
3
u
2
+ u 1)(u
29
+ 2u
28
+ ··· u + 1)
c
2
(u
5
+ 3u
4
+ 4u
3
+ u
2
u 1)(u
29
+ 12u
28
+ ··· 5u 1)
c
3
(u
5
+ u
4
2u
3
u
2
+ u 1)(u
29
+ 2u
28
+ ··· + u + 1)
c
4
(u
5
+ u
4
+ 2u
3
+ u
2
+ u + 1)(u
29
+ 2u
28
+ ··· u + 1)
c
5
(u
5
u
4
2u
3
+ u
2
+ u + 1)(u
29
2u
28
+ ··· 65u + 17)
c
6
, c
9
u
5
(u
29
5u
28
+ ··· + 24u
2
+ 32)
c
7
(u
5
u
4
2u
3
+ u
2
+ u + 1)(u
29
+ 2u
28
+ ··· + u + 1)
c
8
((u + 1)
5
)(u
29
+ 6u
28
+ ··· + 5u + 1)
c
10
((u + 1)
5
)(u
29
36u
28
+ ··· 183u 1)
c
11
((u 1)
5
)(u
29
+ 6u
28
+ ··· + 5u + 1)
12
IV. Riley Polynomials
Crossings Riley Polynomials at each crossing
c
1
, c
4
(y
5
+ 3y
4
+ 4y
3
+ y
2
y 1)(y
29
+ 12y
28
+ ··· 5y 1)
c
2
(y
5
y
4
+ 8y
3
3y
2
+ 3y 1)(y
29
+ 12y
28
+ ··· 89y 1)
c
3
, c
7
(y
5
5y
4
+ 8y
3
3y
2
y 1)(y
29
+ 30y
27
+ ··· 5y 1)
c
5
(y
5
5y
4
+ 8y
3
3y
2
y 1)(y
29
+ 12y
28
+ ··· 13285y 289)
c
6
, c
9
y
5
(y
29
+ 33y
28
+ ··· 1536y 1024)
c
8
, c
11
((y 1)
5
)(y
29
36y
28
+ ··· 183y 1)
c
10
((y 1)
5
)(y
29
80y
28
+ ··· + 16377y 1)
13