11n
6
(K11n
6
)
A knot diagram
1
Linearized knot diagam
5 1 7 2 3 10 4 11 7 1 9
Solving Sequence
1,5
2 3
6,10
7 4 8 9 11
c
1
c
2
c
5
c
6
c
4
c
7
c
9
c
11
c
3
, c
8
, c
10
Ideals for irreducible components
2
of X
par
I
u
1
= h−4445u
18
+ 25166u
17
+ ··· + 157228b 130422,
102053u
18
516382u
17
+ ··· + 157228a + 1635396, u
19
5u
18
+ ··· + 18u 1i
I
u
2
= h3a
2
u + a
2
4au + 7b + a + u 9, a
3
+ a
2
u a
2
+ 3au + 2a 5u 5, u
2
+ u + 1i
I
u
3
= hb 1, u
4
u
3
+ 2u
2
+ a u + 1, u
5
u
4
+ 2u
3
u
2
+ u 1i
* 3 irreducible components of dim
C
= 0, with total 30 representations.
1
The image of knot diagram is generated by the software Draw programme developed by An-
drew Bartholomew(http://www.layer8.co.uk/maths/draw/index.htm#Running-draw), where we modi-
fied some parts for our purpose(https://github.com/CATsTAILs/LinksPainter).
2
All coefficients of polynomials are rational numbers. But the coefficients are sometimes approximated
in decimal forms when there is not enough margin.
1
I.
I
u
1
= h−4445u
18
+2.52×10
4
u
17
+· · ·+1.57×10
5
b1.30×10
5
, 1.02×10
5
u
18
5.16 × 10
5
u
17
+ · · · + 1.57 × 10
5
a + 1.64 × 10
6
, u
19
5u
18
+ · · · + 18u 1i
(i) Arc colorings
a
1
=
1
0
a
5
=
0
u
a
2
=
1
u
2
a
3
=
u
2
+ 1
u
2
a
6
=
u
5
2u
3
u
u
5
+ u
3
+ u
a
10
=
0.649077u
18
+ 3.28429u
17
+ ··· + 38.5711u 10.4014
0.0282710u
18
0.160061u
17
+ ··· 2.36210u + 0.829509
a
7
=
0.638684u
18
2.98006u
17
+ ··· 23.7743u + 5.48846
0.213359u
18
+ 1.10318u
17
+ ··· + 6.00785u 0.638684
a
4
=
u
u
3
+ u
a
8
=
0.586798u
18
2.76808u
17
+ ··· 23.8489u + 5.47099
0.195678u
18
+ 0.900151u
17
+ ··· + 5.28026u 0.573772
a
9
=
0.987191u
18
+ 4.82270u
17
+ ··· + 47.6110u 13.0026
0.180432u
18
0.834985u
17
+ ··· 5.84697u + 1.16762
a
11
=
0.620805u
18
+ 3.12423u
17
+ ··· + 36.2090u 9.57192
0.0282710u
18
0.160061u
17
+ ··· 2.36210u + 0.829509
a
11
=
0.620805u
18
+ 3.12423u
17
+ ··· + 36.2090u 9.57192
0.0282710u
18
0.160061u
17
+ ··· 2.36210u + 0.829509
(ii) Obstruction class = 1
(iii) Cusp Shapes =
48467
78614
u
18
220275
78614
u
17
+ ···
2697747
78614
u +
420630
39307
2
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
4
u
19
+ 5u
18
+ ··· + 18u + 1
c
2
u
19
+ 15u
18
+ ··· + 208u 1
c
3
, c
7
u
19
+ 2u
18
+ ··· + 96u 64
c
5
u
19
5u
18
+ ··· + 854u + 49
c
6
, c
9
u
19
+ 3u
18
+ ··· 88u
2
32
c
8
, c
11
u
19
+ 8u
18
+ ··· 15u 1
c
10
u
19
+ 2u
18
+ ··· + 69u 1
3
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
4
y
19
+ 15y
18
+ ··· + 208y 1
c
2
y
19
17y
18
+ ··· + 45036y 1
c
3
, c
7
y
19
40y
18
+ ··· + 17408y 4096
c
5
y
19
49y
18
+ ··· + 501760y 2401
c
6
, c
9
y
19
+ 39y
18
+ ··· 5632y 1024
c
8
, c
11
y
19
+ 2y
18
+ ··· + 69y 1
c
10
y
19
+ 54y
18
+ ··· 2699y 1
4
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.459827 + 0.896977I
a = 2.21570 + 0.93164I
b = 0.888580 + 0.149996I
1.34528 1.87445I 29.9213 + 13.6703I
u = 0.459827 0.896977I
a = 2.21570 0.93164I
b = 0.888580 0.149996I
1.34528 + 1.87445I 29.9213 13.6703I
u = 0.351109 + 0.745933I
a = 0.875169 0.043573I
b = 0.0093474 + 0.0139592I
0.22305 1.43330I 1.61645 + 4.92513I
u = 0.351109 0.745933I
a = 0.875169 + 0.043573I
b = 0.0093474 0.0139592I
0.22305 + 1.43330I 1.61645 4.92513I
u = 0.389305 + 1.111150I
a = 0.862837 0.197630I
b = 0.668732 + 0.907469I
4.23087 + 5.58158I 3.54918 7.60584I
u = 0.389305 1.111150I
a = 0.862837 + 0.197630I
b = 0.668732 0.907469I
4.23087 5.58158I 3.54918 + 7.60584I
u = 0.265172 + 1.190510I
a = 0.759357 + 0.604707I
b = 0.460697 + 0.797639I
1.40496 0.89543I 0.827466 + 0.267848I
u = 0.265172 1.190510I
a = 0.759357 0.604707I
b = 0.460697 0.797639I
1.40496 + 0.89543I 0.827466 0.267848I
u = 1.236570 + 0.125353I
a = 0.08471 + 3.83451I
b = 0.07758 3.21706I
14.6816 4.7277I 1.60029 + 1.79597I
u = 1.236570 0.125353I
a = 0.08471 3.83451I
b = 0.07758 + 3.21706I
14.6816 + 4.7277I 1.60029 1.79597I
5
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.578208 + 0.363922I
a = 1.06872 + 1.66313I
b = 0.039673 0.833778I
2.02190 1.85032I 0.40467 + 3.82422I
u = 0.578208 0.363922I
a = 1.06872 1.66313I
b = 0.039673 + 0.833778I
2.02190 + 1.85032I 0.40467 3.82422I
u = 0.12128 + 1.49762I
a = 1.41899 + 0.08782I
b = 2.23717 0.89116I
8.30737 + 0.41800I 1.92088 0.17258I
u = 0.12128 1.49762I
a = 1.41899 0.08782I
b = 2.23717 + 0.89116I
8.30737 0.41800I 1.92088 + 0.17258I
u = 0.66518 + 1.37702I
a = 2.46188 1.46194I
b = 0.83728 + 3.06795I
18.5579 + 11.4070I 0.02962 4.80086I
u = 0.66518 1.37702I
a = 2.46188 + 1.46194I
b = 0.83728 3.06795I
18.5579 11.4070I 0.02962 + 4.80086I
u = 0.55124 + 1.54379I
a = 2.12819 + 1.66552I
b = 1.08511 3.58320I
19.5193 + 1.7269I 0.878629 0.706920I
u = 0.55124 1.54379I
a = 2.12819 1.66552I
b = 1.08511 + 3.58320I
19.5193 1.7269I 0.878629 + 0.706920I
u = 0.0686432
a = 8.11341
b = 0.682273
1.19847 8.67340
6
II.
I
u
2
= h3a
2
u+a
2
4au+7b+a+u9, a
3
+a
2
ua
2
+ 3 au+2a5u5, u
2
+u+1i
(i) Arc colorings
a
1
=
1
0
a
5
=
0
u
a
2
=
1
u + 1
a
3
=
u
u + 1
a
6
=
1
0
a
10
=
a
3
7
a
2
u +
4
7
au + ···
1
7
a +
9
7
a
7
=
1
7
a
2
u
1
7
au + ··· +
2
7
a +
3
7
4
7
a
2
u +
3
7
au + ··· +
1
7
a +
5
7
a
4
=
u
u + 1
a
8
=
1
7
a
2
u
1
7
au + ··· +
2
7
a +
3
7
4
7
a
2
u +
3
7
au + ··· +
1
7
a +
5
7
a
9
=
3
7
a
2
u
3
7
au + ···
1
7
a +
16
7
1
7
a
2
u
1
7
au + ··· +
2
7
a +
3
7
a
11
=
3
7
a
2
u +
4
7
au + ··· +
6
7
a +
9
7
3
7
a
2
u +
4
7
au + ···
1
7
a +
9
7
a
11
=
3
7
a
2
u +
4
7
au + ··· +
6
7
a +
9
7
3
7
a
2
u +
4
7
au + ···
1
7
a +
9
7
(ii) Obstruction class = 1
(iii) Cusp Shapes =
17
7
a
2
u +
29
7
a
2
4
7
au
6
7
a +
99
7
u +
12
7
7
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
2
, c
5
(u
2
+ u + 1)
3
c
3
, c
7
u
6
c
4
(u
2
u + 1)
3
c
6
, c
10
(u
3
+ u
2
+ 2u + 1)
2
c
8
(u
3
u
2
+ 1)
2
c
9
(u
3
u
2
+ 2u 1)
2
c
11
(u
3
+ u
2
1)
2
8
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
2
, c
4
c
5
(y
2
+ y + 1)
3
c
3
, c
7
y
6
c
6
, c
9
, c
10
(y
3
+ 3y
2
+ 2y 1)
2
c
8
, c
11
(y
3
y
2
+ 2y 1)
2
9
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
2
1(vol +
1CS) Cusp shape
u = 0.500000 + 0.866025I
a = 1.46996 0.49350I
b = 0.569840
1.11345 2.02988I 2.22484 + 11.58609I
u = 0.500000 + 0.866025I
a = 1.11700 + 1.21217I
b = 0.215080 1.307140I
3.02413 4.85801I 0.92725 + 3.71146I
u = 0.500000 + 0.866025I
a = 1.14704 1.58470I
b = 0.215080 + 1.307140I
3.02413 + 0.79824I 2.65209 0.57512I
u = 0.500000 0.866025I
a = 1.46996 + 0.49350I
b = 0.569840
1.11345 + 2.02988I 2.22484 11.58609I
u = 0.500000 0.866025I
a = 1.11700 1.21217I
b = 0.215080 + 1.307140I
3.02413 + 4.85801I 0.92725 3.71146I
u = 0.500000 0.866025I
a = 1.14704 + 1.58470I
b = 0.215080 1.307140I
3.02413 0.79824I 2.65209 + 0.57512I
10
III. I
u
3
= hb 1, u
4
u
3
+ 2u
2
+ a u + 1, u
5
u
4
+ 2u
3
u
2
+ u 1i
(i) Arc colorings
a
1
=
1
0
a
5
=
0
u
a
2
=
1
u
2
a
3
=
u
2
+ 1
u
2
a
6
=
u
4
u
2
1
u
4
u
3
+ u
2
+ 1
a
10
=
u
4
+ u
3
2u
2
+ u 1
1
a
7
=
u
4
u
2
1
u
4
u
3
+ u
2
+ 1
a
4
=
u
u
3
+ u
a
8
=
1
0
a
9
=
u
4
+ u
3
2u
2
+ u 1
1
a
11
=
u
4
+ u
3
2u
2
+ u
1
a
11
=
u
4
+ u
3
2u
2
+ u
1
(ii) Obstruction class = 1
(iii) Cusp Shapes = 3u
4
+ 5u
3
4u
2
+ 3
11
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
u
5
u
4
+ 2u
3
u
2
+ u 1
c
2
u
5
+ 3u
4
+ 4u
3
+ u
2
u 1
c
3
u
5
+ u
4
2u
3
u
2
+ u 1
c
4
u
5
+ u
4
+ 2u
3
+ u
2
+ u + 1
c
5
, c
7
u
5
u
4
2u
3
+ u
2
+ u + 1
c
6
, c
9
u
5
c
8
, c
10
(u + 1)
5
c
11
(u 1)
5
12
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
4
y
5
+ 3y
4
+ 4y
3
+ y
2
y 1
c
2
y
5
y
4
+ 8y
3
3y
2
+ 3y 1
c
3
, c
5
, c
7
y
5
5y
4
+ 8y
3
3y
2
y 1
c
6
, c
9
y
5
c
8
, c
10
, c
11
(y 1)
5
13
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
3
1(vol +
1CS) Cusp shape
u = 0.339110 + 0.822375I
a = 0.428550 + 1.039280I
b = 1.00000
1.31583 1.53058I 8.47842 1.00973I
u = 0.339110 0.822375I
a = 0.428550 1.039280I
b = 1.00000
1.31583 + 1.53058I 8.47842 + 1.00973I
u = 0.766826
a = 1.30408
b = 1.00000
0.756147 1.86520
u = 0.455697 + 1.200150I
a = 0.276511 + 0.728237I
b = 1.00000
4.22763 + 4.40083I 2.41100 1.19010I
u = 0.455697 1.200150I
a = 0.276511 0.728237I
b = 1.00000
4.22763 4.40083I 2.41100 + 1.19010I
14
IV. u-Polynomials
Crossings u-Polynomials at each crossing
c
1
((u
2
+ u + 1)
3
)(u
5
u
4
+ ··· + u 1)(u
19
+ 5u
18
+ ··· + 18u + 1)
c
2
(u
2
+ u + 1)
3
(u
5
+ 3u
4
+ 4u
3
+ u
2
u 1)
· (u
19
+ 15u
18
+ ··· + 208u 1)
c
3
u
6
(u
5
+ u
4
+ ··· + u 1)(u
19
+ 2u
18
+ ··· + 96u 64)
c
4
((u
2
u + 1)
3
)(u
5
+ u
4
+ ··· + u + 1)(u
19
+ 5u
18
+ ··· + 18u + 1)
c
5
((u
2
+ u + 1)
3
)(u
5
u
4
+ ··· + u + 1)(u
19
5u
18
+ ··· + 854u + 49)
c
6
u
5
(u
3
+ u
2
+ 2u + 1)
2
(u
19
+ 3u
18
+ ··· 88u
2
32)
c
7
u
6
(u
5
u
4
+ ··· + u + 1)(u
19
+ 2u
18
+ ··· + 96u 64)
c
8
((u + 1)
5
)(u
3
u
2
+ 1)
2
(u
19
+ 8u
18
+ ··· 15u 1)
c
9
u
5
(u
3
u
2
+ 2u 1)
2
(u
19
+ 3u
18
+ ··· 88u
2
32)
c
10
((u + 1)
5
)(u
3
+ u
2
+ 2u + 1)
2
(u
19
+ 2u
18
+ ··· + 69u 1)
c
11
((u 1)
5
)(u
3
+ u
2
1)
2
(u
19
+ 8u
18
+ ··· 15u 1)
15
V. Riley Polynomials
Crossings Riley Polynomials at each crossing
c
1
, c
4
(y
2
+ y + 1)
3
(y
5
+ 3y
4
+ 4y
3
+ y
2
y 1)
· (y
19
+ 15y
18
+ ··· + 208y 1)
c
2
(y
2
+ y + 1)
3
(y
5
y
4
+ 8y
3
3y
2
+ 3y 1)
· (y
19
17y
18
+ ··· + 45036y 1)
c
3
, c
7
y
6
(y
5
5y
4
+ ··· y 1)(y
19
40y
18
+ ··· + 17408y 4096)
c
5
(y
2
+ y + 1)
3
(y
5
5y
4
+ 8y
3
3y
2
y 1)
· (y
19
49y
18
+ ··· + 501760y 2401)
c
6
, c
9
y
5
(y
3
+ 3y
2
+ 2y 1)
2
(y
19
+ 39y
18
+ ··· 5632y 1024)
c
8
, c
11
((y 1)
5
)(y
3
y
2
+ 2y 1)
2
(y
19
+ 2y
18
+ ··· + 69y 1)
c
10
((y 1)
5
)(y
3
+ 3y
2
+ 2y 1)
2
(y
19
+ 54y
18
+ ··· 2699y 1)
16