11n
9
(K11n
9
)
A knot diagram
1
Linearized knot diagam
5 1 7 2 3 10 4 11 1 7 9
Solving Sequence
1,5
2 3
6,10
7 4 8 9 11
c
1
c
2
c
5
c
6
c
4
c
7
c
9
c
11
c
3
, c
8
, c
10
Ideals for irreducible components
2
of X
par
I
u
1
= h7u
10
25u
9
+ 49u
8
40u
7
+ 18u
6
11u
5
+ 35u
4
+ u
2
+ 46b 21u + 24,
31u
10
+ 114u
9
240u
8
+ 279u
7
290u
6
+ 305u
5
408u
4
+ 253u
3
241u
2
+ 46a + 116u 241,
u
11
4u
10
+ 9u
9
12u
8
+ 13u
7
13u
6
+ 16u
5
12u
4
+ 10u
3
4u
2
+ 8u 1i
I
u
2
= hb + 1, u
4
+ u
3
2u
2
+ a + u 1, u
5
u
4
+ 2u
3
u
2
+ u 1i
I
u
3
= h−au + 3b + a + u 1, a
2
+ au 4u 4, u
2
+ u + 1i
* 3 irreducible components of dim
C
= 0, with total 20 representations.
1
The image of knot diagram is generated by the software Draw programme developed by An-
drew Bartholomew(http://www.layer8.co.uk/maths/draw/index.htm#Running-draw), where we modi-
fied some parts for our purpose(https://github.com/CATsTAILs/LinksPainter).
2
All coefficients of polynomials are rational numbers. But the coefficients are sometimes approximated
in decimal forms when there is not enough margin.
1
I. I
u
1
= h7u
10
25u
9
+ · · · + 46b + 24, 31u
10
+ 114u
9
+ · · · + 46a
241, u
11
4u
10
+ · · · + 8u 1i
(i) Arc colorings
a
1
=
1
0
a
5
=
0
u
a
2
=
1
u
2
a
3
=
u
2
+ 1
u
2
a
6
=
u
5
2u
3
u
u
5
+ u
3
+ u
a
10
=
0.673913u
10
2.47826u
9
+ ··· 2.52174u + 5.23913
0.152174u
10
+ 0.543478u
9
+ ··· + 0.456522u 0.521739
a
7
=
0.173913u
10
+ 0.978261u
9
+ ··· + 1.02174u 3.23913
0.282609u
10
+ 1.15217u
9
+ ··· + 1.84783u + 0.173913
a
4
=
u
u
3
+ u
a
8
=
0.260870u
10
0.717391u
9
+ ··· 1.28261u 2.89130
0.0217391u
10
+ 0.934783u
9
+ ··· + 4.06522u 0.217391
a
9
=
0.521739u
10
1.93478u
9
+ ··· 2.06522u + 4.71739
0.152174u
10
+ 0.543478u
9
+ ··· + 0.456522u 0.521739
a
11
=
0.0652174u
10
0.304348u
9
+ ··· 0.695652u + 3.15217
0.108696u
10
0.673913u
9
+ ··· 2.32609u + 0.0869565
a
11
=
0.0652174u
10
0.304348u
9
+ ··· 0.695652u + 3.15217
0.108696u
10
0.673913u
9
+ ··· 2.32609u + 0.0869565
(ii) Obstruction class = 1
(iii) Cusp Shapes
=
13
46
u
10
+
53
46
u
9
137
46
u
8
+
93
23
u
7
89
23
u
6
+
119
46
u
5
203
46
u
4
+ 6u
3
337
46
u
2
+
39
46
u
272
23
2
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
4
u
11
+ 4u
10
+ ··· + 8u + 1
c
2
u
11
+ 2u
10
+ ··· + 56u 1
c
3
, c
7
u
11
3u
10
+ ··· + 16u + 16
c
5
u
11
4u
10
+ ··· + 790u + 97
c
6
, c
10
u
11
+ 3u
10
+ ··· 96u + 32
c
8
, c
9
, c
11
u
11
8u
10
+ ··· 2u + 1
3
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
4
y
11
+ 2y
10
+ ··· + 56y 1
c
2
y
11
+ 18y
10
+ ··· + 3376y 1
c
3
, c
7
y
11
+ 15y
10
+ ··· + 1152y 256
c
5
y
11
+ 34y
10
+ ··· + 507312y 9409
c
6
, c
10
y
11
+ 27y
10
+ ··· 2560y 1024
c
8
, c
9
, c
11
y
11
14y
10
+ ··· 114y 1
4
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.370726 + 0.886061I
a = 0.869101 0.048452I
b = 0.0248083 + 0.1208390I
0.37744 1.65887I 3.08713 + 3.12324I
u = 0.370726 0.886061I
a = 0.869101 + 0.048452I
b = 0.0248083 0.1208390I
0.37744 + 1.65887I 3.08713 3.12324I
u = 0.619363 + 0.675074I
a = 1.22270 1.02577I
b = 1.234510 + 0.125378I
1.43681 1.43186I 8.27132 + 5.43285I
u = 0.619363 0.675074I
a = 1.22270 + 1.02577I
b = 1.234510 0.125378I
1.43681 + 1.43186I 8.27132 5.43285I
u = 0.684593 + 1.110730I
a = 1.60080 + 0.55358I
b = 1.67575 + 0.38496I
8.43909 + 3.01365I 11.25510 3.03574I
u = 0.684593 1.110730I
a = 1.60080 0.55358I
b = 1.67575 0.38496I
8.43909 3.01365I 11.25510 + 3.03574I
u = 0.85960 + 1.26321I
a = 0.91455 + 2.45311I
b = 1.82324 1.07192I
10.9219 + 10.3175I 9.91350 4.19094I
u = 0.85960 1.26321I
a = 0.91455 2.45311I
b = 1.82324 + 1.07192I
10.9219 10.3175I 9.91350 + 4.19094I
u = 1.38032 + 0.75647I
a = 2.57070 2.19582I
b = 1.94194 + 1.79095I
12.91330 2.44000I 8.55865 + 0.24092I
u = 1.38032 0.75647I
a = 2.57070 + 2.19582I
b = 1.94194 1.79095I
12.91330 + 2.44000I 8.55865 0.24092I
5
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.131154
a = 4.98850
b = 0.462456
0.844734 11.8290
6
II. I
u
2
= hb + 1, u
4
+ u
3
2u
2
+ a + u 1, u
5
u
4
+ 2u
3
u
2
+ u 1i
(i) Arc colorings
a
1
=
1
0
a
5
=
0
u
a
2
=
1
u
2
a
3
=
u
2
+ 1
u
2
a
6
=
u
4
u
2
1
u
4
u
3
+ u
2
+ 1
a
10
=
u
4
u
3
+ 2u
2
u + 1
1
a
7
=
u
4
u
2
1
u
4
u
3
+ u
2
+ 1
a
4
=
u
u
3
+ u
a
8
=
1
0
a
9
=
u
4
u
3
+ 2u
2
u
1
a
11
=
u
4
u
3
+ 2u
2
u + 1
1
a
11
=
u
4
u
3
+ 2u
2
u + 1
1
(ii) Obstruction class = 1
(iii) Cusp Shapes = 3u
4
+ 3u
3
4u
2
+ 8u 15
7
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
u
5
u
4
+ 2u
3
u
2
+ u 1
c
2
u
5
+ 3u
4
+ 4u
3
+ u
2
u 1
c
3
u
5
+ u
4
2u
3
u
2
+ u 1
c
4
u
5
+ u
4
+ 2u
3
+ u
2
+ u + 1
c
5
, c
7
u
5
u
4
2u
3
+ u
2
+ u + 1
c
6
, c
10
u
5
c
8
, c
9
(u 1)
5
c
11
(u + 1)
5
8
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
4
y
5
+ 3y
4
+ 4y
3
+ y
2
y 1
c
2
y
5
y
4
+ 8y
3
3y
2
+ 3y 1
c
3
, c
5
, c
7
y
5
5y
4
+ 8y
3
3y
2
y 1
c
6
, c
10
y
5
c
8
, c
9
, c
11
(y 1)
5
9
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
2
1(vol +
1CS) Cusp shape
u = 0.339110 + 0.822375I
a = 0.428550 1.039280I
b = 1.00000
1.97403 1.53058I 13.5086 + 9.8710I
u = 0.339110 0.822375I
a = 0.428550 + 1.039280I
b = 1.00000
1.97403 + 1.53058I 13.5086 9.8710I
u = 0.766826
a = 1.30408
b = 1.00000
4.04602 8.82740
u = 0.455697 + 1.200150I
a = 0.276511 0.728237I
b = 1.00000
7.51750 + 4.40083I 11.07763 5.80708I
u = 0.455697 1.200150I
a = 0.276511 + 0.728237I
b = 1.00000
7.51750 4.40083I 11.07763 + 5.80708I
10
III. I
u
3
= h−au + 3b + a + u 1, a
2
+ au 4u 4, u
2
+ u + 1i
(i) Arc colorings
a
1
=
1
0
a
5
=
0
u
a
2
=
1
u + 1
a
3
=
u
u + 1
a
6
=
1
0
a
10
=
a
1
3
au
1
3
a
1
3
u +
1
3
a
7
=
1
3
au
2
3
a +
4
3
u +
5
3
1
3
au +
1
3
a +
1
3
u
4
3
a
4
=
u
u + 1
a
8
=
1
3
au
2
3
a +
4
3
u +
5
3
1
3
au +
1
3
a +
1
3
u
4
3
a
9
=
1
3
au +
2
3
a
1
3
u +
1
3
1
3
au
1
3
a
1
3
u +
1
3
a
11
=
2
3
au
1
3
a +
5
3
u +
7
3
1
3
au +
1
3
a +
1
3
u
4
3
a
11
=
2
3
au
1
3
a +
5
3
u +
7
3
1
3
au +
1
3
a +
1
3
u
4
3
(ii) Obstruction class = 1
(iii) Cusp Shapes = 3au + 3a + 4u 15
11
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
2
, c
5
(u
2
+ u + 1)
2
c
3
, c
7
u
4
c
4
(u
2
u + 1)
2
c
6
, c
8
, c
9
(u
2
+ u 1)
2
c
10
, c
11
(u
2
u 1)
2
12
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
2
, c
4
c
5
(y
2
+ y + 1)
2
c
3
, c
7
y
4
c
6
, c
8
, c
9
c
10
, c
11
(y
2
3y + 1)
2
13
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
3
1(vol +
1CS) Cusp shape
u = 0.500000 + 0.866025I
a = 1.92705 + 0.53523I
b = 0.618034
0.98696 2.02988I 15.5000 + 9.2736I
u = 0.500000 + 0.866025I
a = 1.42705 1.40126I
b = 1.61803
8.88264 2.02988I 15.5000 2.3454I
u = 0.500000 0.866025I
a = 1.92705 0.53523I
b = 0.618034
0.98696 + 2.02988I 15.5000 9.2736I
u = 0.500000 0.866025I
a = 1.42705 + 1.40126I
b = 1.61803
8.88264 + 2.02988I 15.5000 + 2.3454I
14
IV. u-Polynomials
Crossings u-Polynomials at each crossing
c
1
((u
2
+ u + 1)
2
)(u
5
u
4
+ ··· + u 1)(u
11
+ 4u
10
+ ··· + 8u + 1)
c
2
((u
2
+ u + 1)
2
)(u
5
+ 3u
4
+ ··· u 1)(u
11
+ 2u
10
+ ··· + 56u 1)
c
3
u
4
(u
5
+ u
4
+ ··· + u 1)(u
11
3u
10
+ ··· + 16u + 16)
c
4
((u
2
u + 1)
2
)(u
5
+ u
4
+ ··· + u + 1)(u
11
+ 4u
10
+ ··· + 8u + 1)
c
5
((u
2
+ u + 1)
2
)(u
5
u
4
+ ··· + u + 1)(u
11
4u
10
+ ··· + 790u + 97)
c
6
u
5
(u
2
+ u 1)
2
(u
11
+ 3u
10
+ ··· 96u + 32)
c
7
u
4
(u
5
u
4
+ ··· + u + 1)(u
11
3u
10
+ ··· + 16u + 16)
c
8
, c
9
((u 1)
5
)(u
2
+ u 1)
2
(u
11
8u
10
+ ··· 2u + 1)
c
10
u
5
(u
2
u 1)
2
(u
11
+ 3u
10
+ ··· 96u + 32)
c
11
((u + 1)
5
)(u
2
u 1)
2
(u
11
8u
10
+ ··· 2u + 1)
15
V. Riley Polynomials
Crossings Riley Polynomials at each crossing
c
1
, c
4
((y
2
+ y + 1)
2
)(y
5
+ 3y
4
+ ··· y 1)(y
11
+ 2y
10
+ ··· + 56y 1)
c
2
(y
2
+ y + 1)
2
(y
5
y
4
+ 8y
3
3y
2
+ 3y 1)
· (y
11
+ 18y
10
+ ··· + 3376y 1)
c
3
, c
7
y
4
(y
5
5y
4
+ ··· y 1)(y
11
+ 15y
10
+ ··· + 1152y 256)
c
5
(y
2
+ y + 1)
2
(y
5
5y
4
+ 8y
3
3y
2
y 1)
· (y
11
+ 34y
10
+ ··· + 507312y 9409)
c
6
, c
10
y
5
(y
2
3y + 1)
2
(y
11
+ 27y
10
+ ··· 2560y 1024)
c
8
, c
9
, c
11
((y 1)
5
)(y
2
3y + 1)
2
(y
11
14y
10
+ ··· 114y 1)
16