11n
14
(K11n
14
)
A knot diagram
1
Linearized knot diagam
5 1 9 2 3 10 11 3 6 7 9
Solving Sequence
6,10
7
3,11
5 9 4 1 2 8
c
6
c
10
c
5
c
9
c
3
c
11
c
2
c
8
c
1
, c
4
, c
7
Ideals for irreducible components
2
of X
par
I
u
1
= h−3u
25
6u
24
+ ··· + 2b 7u, 7u
25
+ 14u
24
+ ··· + 2a + 9u, u
26
+ 3u
25
+ ··· + u 1i
I
u
2
= hb + a, a
2
a + 1, u
2
u 1i
* 2 irreducible components of dim
C
= 0, with total 30 representations.
1
The image of knot diagram is generated by the software Draw programme developed by An-
drew Bartholomew(http://www.layer8.co.uk/maths/draw/index.htm#Running-draw), where we modi-
fied some parts for our purpose(https://github.com/CATsTAILs/LinksPainter).
2
All coefficients of polynomials are rational numbers. But the coefficients are sometimes approximated
in decimal forms when there is not enough margin.
1
I. I
u
1
=
h−3u
25
6u
24
+· · ·+ 2 b7u, 7u
25
+14u
24
+· · ·+ 2 a+ 9u, u
26
+3u
25
+· · ·+u1i
(i) Arc colorings
a
6
=
1
0
a
10
=
0
u
a
7
=
1
u
2
a
3
=
7
2
u
25
7u
24
+ ··· 2u
2
9
2
u
3
2
u
25
+ 3u
24
+ ··· + u
2
+
7
2
u
a
11
=
u
u
3
+ u
a
5
=
1
2
u
25
+ u
24
+ ··· 4u
2
5
2
u
1
2
u
25
u
24
+ ··· + 4u
2
+
1
2
u
a
9
=
u
u
a
4
=
13
2
u
25
12u
24
+ ···
17
2
u + 2
9
2
u
25
+ 8u
24
+ ··· +
15
2
u 2
a
1
=
u
5
+ 2u
3
+ u
u
5
3u
3
+ u
a
2
=
6u
25
10u
24
+ ··· 6u + 2
11
2
u
25
+ 9u
24
+ ··· +
15
2
u 2
a
8
=
u
2
+ 1
u
4
2u
2
a
8
=
u
2
+ 1
u
4
2u
2
(ii) Obstruction class = 1
(iii) Cusp Shapes =
5
2
u
25
+ 4u
24
57
2
u
23
41u
22
+
277
2
u
21
+
305
2
u
20
391u
19
205u
18
+
1475
2
u
17
141u
16
910u
15
+ 742u
14
+ 464u
13
1721
2
u
12
+ 374u
11
+ 381u
10
512u
9
+ 147u
8
+
229
2
u
7
247u
6
49
2
u
5
+
29
2
u
4
53u
3
27u
2
29
2
u + 9
2
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
4
u
26
+ 3u
25
+ ··· 3u + 1
c
2
u
26
+ 15u
25
+ ··· 23u + 1
c
3
, c
8
u
26
u
25
+ ··· + 16u 16
c
5
u
26
3u
25
+ ··· 11u + 2
c
6
, c
7
, c
9
c
10
u
26
3u
25
+ ··· u 1
c
11
u
26
+ 3u
25
+ ··· + 3u 1
3
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
4
y
26
+ 15y
25
+ ··· 23y + 1
c
2
y
26
5y
25
+ ··· 795y + 1
c
3
, c
8
y
26
+ 25y
25
+ ··· + 1664y + 256
c
5
y
26
25y
25
+ ··· + 7y + 4
c
6
, c
7
, c
9
c
10
y
26
29y
25
+ ··· 19y + 1
c
11
y
26
+ 31y
25
+ ··· 19y + 1
4
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.608473 + 0.715807I
a = 0.153590 1.045830I
b = 1.73126 + 0.24397I
7.73283 + 7.28919I 4.65018 5.96812I
u = 0.608473 0.715807I
a = 0.153590 + 1.045830I
b = 1.73126 0.24397I
7.73283 7.28919I 4.65018 + 5.96812I
u = 0.433445 + 0.761836I
a = 0.011324 1.102790I
b = 1.56800 + 0.06124I
8.25588 2.37235I 3.41364 + 0.56644I
u = 0.433445 0.761836I
a = 0.011324 + 1.102790I
b = 1.56800 0.06124I
8.25588 + 2.37235I 3.41364 0.56644I
u = 0.514434 + 0.670493I
a = 0.106433 + 1.146570I
b = 1.59480 0.23303I
4.15442 + 2.25820I 7.09524 3.00458I
u = 0.514434 0.670493I
a = 0.106433 1.146570I
b = 1.59480 + 0.23303I
4.15442 2.25820I 7.09524 + 3.00458I
u = 0.730522 + 0.264601I
a = 0.408112 0.721539I
b = 0.020892 0.242346I
0.141642 0.491245I 7.19488 + 1.21216I
u = 0.730522 0.264601I
a = 0.408112 + 0.721539I
b = 0.020892 + 0.242346I
0.141642 + 0.491245I 7.19488 1.21216I
u = 1.42824 + 0.09847I
a = 0.332202 + 0.112416I
b = 1.191590 0.262632I
3.94867 + 3.99401I 9.09163 3.57778I
u = 1.42824 0.09847I
a = 0.332202 0.112416I
b = 1.191590 + 0.262632I
3.94867 3.99401I 9.09163 + 3.57778I
5
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 1.47226 + 0.03460I
a = 0.29209 2.37542I
b = 0.36258 + 1.62911I
6.47513 2.78553I 10.00226 + 3.18308I
u = 1.47226 0.03460I
a = 0.29209 + 2.37542I
b = 0.36258 1.62911I
6.47513 + 2.78553I 10.00226 3.18308I
u = 1.45262 + 0.27035I
a = 0.87552 + 1.41378I
b = 1.239850 0.375242I
2.20853 1.36342I 6.29553 + 0.38377I
u = 1.45262 0.27035I
a = 0.87552 1.41378I
b = 1.239850 + 0.375242I
2.20853 + 1.36342I 6.29553 0.38377I
u = 0.230011 + 0.458848I
a = 0.727275 + 1.025970I
b = 0.536127 + 0.217517I
1.40190 2.19157I 3.35211 + 5.42014I
u = 0.230011 0.458848I
a = 0.727275 1.025970I
b = 0.536127 0.217517I
1.40190 + 2.19157I 3.35211 5.42014I
u = 1.49087
a = 0.257464
b = 0.956110
7.14521 13.5410
u = 1.52539 + 0.21566I
a = 1.11758 1.58851I
b = 1.54625 + 0.70491I
2.54423 5.47373I 10.67253 + 2.88121I
u = 1.52539 0.21566I
a = 1.11758 + 1.58851I
b = 1.54625 0.70491I
2.54423 + 5.47373I 10.67253 2.88121I
u = 0.448296
a = 0.791985
b = 0.195879
0.706372 14.0850
6
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 1.56905 + 0.24097I
a = 1.25395 + 1.44166I
b = 1.78957 0.55743I
0.54439 10.83970I 8.04696 + 6.04188I
u = 1.56905 0.24097I
a = 1.25395 1.44166I
b = 1.78957 + 0.55743I
0.54439 + 10.83970I 8.04696 6.04188I
u = 1.63847 + 0.03227I
a = 0.0580399 0.1115770I
b = 0.266246 + 0.474227I
8.45818 + 1.37920I 7.00000 + 2.69707I
u = 1.63847 0.03227I
a = 0.0580399 + 0.1115770I
b = 0.266246 0.474227I
8.45818 1.37920I 7.00000 2.69707I
u = 0.335499 + 0.109869I
a = 0.03337 + 2.42886I
b = 0.460465 1.052830I
0.44924 + 2.24817I 0.24032 5.78182I
u = 0.335499 0.109869I
a = 0.03337 2.42886I
b = 0.460465 + 1.052830I
0.44924 2.24817I 0.24032 + 5.78182I
7
II. I
u
2
= hb + a, a
2
a + 1, u
2
u 1i
(i) Arc colorings
a
6
=
1
0
a
10
=
0
u
a
7
=
1
u 1
a
3
=
a
a
a
11
=
u
u 1
a
5
=
a
a + 1
a
9
=
u
u
a
4
=
a
a
a
1
=
1
0
a
2
=
0
a
a
8
=
u
u
a
8
=
u
u
(ii) Obstruction class = 1
(iii) Cusp Shapes = 2au + 3a u + 12
8
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
2
, c
5
(u
2
+ u + 1)
2
c
3
, c
8
u
4
c
4
(u
2
u + 1)
2
c
6
, c
7
(u
2
u 1)
2
c
9
, c
10
, c
11
(u
2
+ u 1)
2
9
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
2
, c
4
c
5
(y
2
+ y + 1)
2
c
3
, c
8
y
4
c
6
, c
7
, c
9
c
10
, c
11
(y
2
3y + 1)
2
10
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
2
1(vol +
1CS) Cusp shape
u = 0.618034
a = 0.500000 + 0.866025I
b = 0.500000 0.866025I
0.98696 2.02988I 13.50000 + 1.52761I
u = 0.618034
a = 0.500000 0.866025I
b = 0.500000 + 0.866025I
0.98696 + 2.02988I 13.50000 1.52761I
u = 1.61803
a = 0.500000 + 0.866025I
b = 0.500000 0.866025I
8.88264 2.02988I 13.5000 + 5.4006I
u = 1.61803
a = 0.500000 0.866025I
b = 0.500000 + 0.866025I
8.88264 + 2.02988I 13.5000 5.4006I
11
III. u-Polynomials
Crossings u-Polynomials at each crossing
c
1
((u
2
+ u + 1)
2
)(u
26
+ 3u
25
+ ··· 3u + 1)
c
2
((u
2
+ u + 1)
2
)(u
26
+ 15u
25
+ ··· 23u + 1)
c
3
, c
8
u
4
(u
26
u
25
+ ··· + 16u 16)
c
4
((u
2
u + 1)
2
)(u
26
+ 3u
25
+ ··· 3u + 1)
c
5
((u
2
+ u + 1)
2
)(u
26
3u
25
+ ··· 11u + 2)
c
6
, c
7
((u
2
u 1)
2
)(u
26
3u
25
+ ··· u 1)
c
9
, c
10
((u
2
+ u 1)
2
)(u
26
3u
25
+ ··· u 1)
c
11
((u
2
+ u 1)
2
)(u
26
+ 3u
25
+ ··· + 3u 1)
12
IV. Riley Polynomials
Crossings Riley Polynomials at each crossing
c
1
, c
4
((y
2
+ y + 1)
2
)(y
26
+ 15y
25
+ ··· 23y + 1)
c
2
((y
2
+ y + 1)
2
)(y
26
5y
25
+ ··· 795y + 1)
c
3
, c
8
y
4
(y
26
+ 25y
25
+ ··· + 1664y + 256)
c
5
((y
2
+ y + 1)
2
)(y
26
25y
25
+ ··· + 7y + 4)
c
6
, c
7
, c
9
c
10
((y
2
3y + 1)
2
)(y
26
29y
25
+ ··· 19y + 1)
c
11
((y
2
3y + 1)
2
)(y
26
+ 31y
25
+ ··· 19y + 1)
13