11n
15
(K11n
15
)
A knot diagram
1
Linearized knot diagam
5 1 9 2 3 10 11 3 1 7 8
Solving Sequence
7,11
8
1,3
2 10 6 5 4 9
c
7
c
11
c
2
c
10
c
6
c
5
c
4
c
9
c
1
, c
3
, c
8
Ideals for irreducible components
2
of X
par
I
u
1
= h3u
20
5u
19
+ ··· + 2b + 1, 4u
20
7u
19
+ ··· + 2a + 1, u
21
3u
20
+ ··· u 1i
I
u
2
= hau + b a, a
2
+ au + a + u + 2, u
2
+ u 1i
* 2 irreducible components of dim
C
= 0, with total 25 representations.
1
The image of knot diagram is generated by the software Draw programme developed by An-
drew Bartholomew(http://www.layer8.co.uk/maths/draw/index.htm#Running-draw), where we modi-
fied some parts for our purpose(https://github.com/CATsTAILs/LinksPainter).
2
All coefficients of polynomials are rational numbers. But the coefficients are sometimes approximated
in decimal forms when there is not enough margin.
1
I.
I
u
1
= h3u
20
5u
19
+· · ·+2b+1, 4u
20
7u
19
+· · ·+2a+1, u
21
3u
20
+· · ·u1i
(i) Arc colorings
a
7
=
1
0
a
11
=
0
u
a
8
=
1
u
2
a
1
=
u
u
3
+ u
a
3
=
2u
20
+
7
2
u
19
+ ··· 4u
1
2
3
2
u
20
+
5
2
u
19
+ ···
3
2
u
1
2
a
2
=
3
2
u
20
+ 2u
19
+ ··· + 2u
2
7
2
u
5
2
u
20
+ 4u
19
+ ···
3
2
u 1
a
10
=
u
u
a
6
=
u
2
+ 1
u
2
a
5
=
1
2
u
19
u
18
+ ··· + 3u +
1
2
1
2
u
20
1
2
u
19
+ ··· +
3
2
u +
1
2
a
4
=
4u
20
+
11
2
u
19
+ ··· 3u
7
2
13
2
u
20
+
21
2
u
19
+ ···
15
2
u
9
2
a
9
=
u
5
+ 2u
3
+ u
u
7
+ 3u
5
2u
3
+ u
a
9
=
u
5
+ 2u
3
+ u
u
7
+ 3u
5
2u
3
+ u
(ii) Obstruction class = 1
(iii) Cusp Shapes
=
13
2
u
20
11u
19
57u
18
+ 87u
17
+ 209u
16
459
2
u
15
462u
14
+
319
2
u
13
+
1465
2
u
12
+
258u
11
713u
10
1001
2
u
9
+ 174u
8
+ 353u
7
+ 160u
6
101u
5
+
9
2
u
4
77u
3
+ 13u
2
1
2
u + 4
2
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
4
u
21
+ 3u
20
+ ··· u 1
c
2
u
21
+ 5u
20
+ ··· 13u 1
c
3
, c
8
u
21
u
20
+ ··· + 16u + 16
c
5
u
21
3u
20
+ ··· 517u 241
c
6
, c
7
, c
10
c
11
u
21
+ 3u
20
+ ··· u + 1
c
9
u
21
u
20
+ ··· + 3u + 1
3
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
4
y
21
+ 5y
20
+ ··· 13y 1
c
2
y
21
+ 25y
20
+ ··· + 31y 1
c
3
, c
8
y
21
25y
20
+ ··· + 1408y 256
c
5
y
21
+ 45y
20
+ ··· 1228357y 58081
c
6
, c
7
, c
10
c
11
y
21
23y
20
+ ··· y 1
c
9
y
21
+ 37y
20
+ ··· y 1
4
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.586384 + 0.784633I
a = 0.273404 1.248180I
b = 0.731733 + 0.893746I
9.06037 + 6.00997I 1.49297 4.91702I
u = 0.586384 0.784633I
a = 0.273404 + 1.248180I
b = 0.731733 0.893746I
9.06037 6.00997I 1.49297 + 4.91702I
u = 0.502427 + 0.810890I
a = 0.300534 + 0.922223I
b = 1.209200 0.664376I
9.31347 0.73158I 0.878702 0.143829I
u = 0.502427 0.810890I
a = 0.300534 0.922223I
b = 1.209200 + 0.664376I
9.31347 + 0.73158I 0.878702 + 0.143829I
u = 1.30058
a = 0.779544
b = 0.0623998
2.53925 3.24500
u = 0.650843 + 0.188135I
a = 0.679014 0.497949I
b = 0.257058 + 0.102289I
1.259870 0.426532I 8.18330 + 0.83082I
u = 0.650843 0.188135I
a = 0.679014 + 0.497949I
b = 0.257058 0.102289I
1.259870 + 0.426532I 8.18330 0.83082I
u = 1.349430 + 0.063463I
a = 0.17958 2.26263I
b = 0.08959 2.87750I
3.34560 + 2.92064I 6.05745 2.89789I
u = 1.349430 0.063463I
a = 0.17958 + 2.26263I
b = 0.08959 + 2.87750I
3.34560 2.92064I 6.05745 + 2.89789I
u = 1.45264 + 0.09803I
a = 0.354434 0.632200I
b = 0.288153 1.061360I
6.20743 3.92323I 7.50265 + 3.86571I
5
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 1.45264 0.09803I
a = 0.354434 + 0.632200I
b = 0.288153 + 1.061360I
6.20743 + 3.92323I 7.50265 3.86571I
u = 1.51579 + 0.30268I
a = 1.36198 + 1.35966I
b = 2.52269 + 1.32132I
2.78944 3.34833I 3.65691 + 0.92294I
u = 1.51579 0.30268I
a = 1.36198 1.35966I
b = 2.52269 1.32132I
2.78944 + 3.34833I 3.65691 0.92294I
u = 0.033690 + 0.433118I
a = 1.030760 0.710959I
b = 0.333491 + 0.730890I
0.87590 1.40870I 1.21226 + 3.90536I
u = 0.033690 0.433118I
a = 1.030760 + 0.710959I
b = 0.333491 0.730890I
0.87590 + 1.40870I 1.21226 3.90536I
u = 1.56509 + 0.27721I
a = 1.22824 1.65327I
b = 2.69420 2.24461I
2.01164 9.94805I 4.72572 + 5.38300I
u = 1.56509 0.27721I
a = 1.22824 + 1.65327I
b = 2.69420 + 2.24461I
2.01164 + 9.94805I 4.72572 5.38300I
u = 0.317530 + 0.257874I
a = 2.02998 0.42048I
b = 0.636210 0.403748I
0.37325 + 2.55975I 0.64804 6.58188I
u = 0.317530 0.257874I
a = 2.02998 + 0.42048I
b = 0.636210 + 0.403748I
0.37325 2.55975I 0.64804 + 6.58188I
u = 1.61257 + 0.03861I
a = 0.642150 0.779274I
b = 1.15512 1.57833I
9.12765 + 1.23257I 9.74011 + 3.00809I
6
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 1.61257 0.03861I
a = 0.642150 + 0.779274I
b = 1.15512 + 1.57833I
9.12765 1.23257I 9.74011 3.00809I
7
II. I
u
2
= hau + b a, a
2
+ au + a + u + 2, u
2
+ u 1i
(i) Arc colorings
a
7
=
1
0
a
11
=
0
u
a
8
=
1
u + 1
a
1
=
u
u + 1
a
3
=
a
au + a
a
2
=
au + 2a
3au + 2a
a
10
=
u
u
a
6
=
u
u 1
a
5
=
a + 2u + 1
au + a + 2u 1
a
4
=
a
au + a
a
9
=
1
u + 1
a
9
=
1
u + 1
(ii) Obstruction class = 1
(iii) Cusp Shapes = 5au + 2a + u 8
8
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
2
, c
5
(u
2
+ u + 1)
2
c
3
, c
8
u
4
c
4
(u
2
u + 1)
2
c
6
, c
7
, c
9
(u
2
+ u 1)
2
c
10
, c
11
(u
2
u 1)
2
9
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
2
, c
4
c
5
(y
2
+ y + 1)
2
c
3
, c
8
y
4
c
6
, c
7
, c
9
c
10
, c
11
(y
2
3y + 1)
2
10
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
2
1(vol +
1CS) Cusp shape
u = 0.618034
a = 0.80902 + 1.40126I
b = 0.309017 + 0.535233I
0.98696 + 2.02988I 6.50000 1.52761I
u = 0.618034
a = 0.80902 1.40126I
b = 0.309017 0.535233I
0.98696 2.02988I 6.50000 + 1.52761I
u = 1.61803
a = 0.309017 + 0.535233I
b = 0.80902 + 1.40126I
8.88264 2.02988I 6.50000 + 5.40059I
u = 1.61803
a = 0.309017 0.535233I
b = 0.80902 1.40126I
8.88264 + 2.02988I 6.50000 5.40059I
11
III. u-Polynomials
Crossings u-Polynomials at each crossing
c
1
((u
2
+ u + 1)
2
)(u
21
+ 3u
20
+ ··· u 1)
c
2
((u
2
+ u + 1)
2
)(u
21
+ 5u
20
+ ··· 13u 1)
c
3
, c
8
u
4
(u
21
u
20
+ ··· + 16u + 16)
c
4
((u
2
u + 1)
2
)(u
21
+ 3u
20
+ ··· u 1)
c
5
((u
2
+ u + 1)
2
)(u
21
3u
20
+ ··· 517u 241)
c
6
, c
7
((u
2
+ u 1)
2
)(u
21
+ 3u
20
+ ··· u + 1)
c
9
((u
2
+ u 1)
2
)(u
21
u
20
+ ··· + 3u + 1)
c
10
, c
11
((u
2
u 1)
2
)(u
21
+ 3u
20
+ ··· u + 1)
12
IV. Riley Polynomials
Crossings Riley Polynomials at each crossing
c
1
, c
4
((y
2
+ y + 1)
2
)(y
21
+ 5y
20
+ ··· 13y 1)
c
2
((y
2
+ y + 1)
2
)(y
21
+ 25y
20
+ ··· + 31y 1)
c
3
, c
8
y
4
(y
21
25y
20
+ ··· + 1408y 256)
c
5
((y
2
+ y + 1)
2
)(y
21
+ 45y
20
+ ··· 1228357y 58081)
c
6
, c
7
, c
10
c
11
((y
2
3y + 1)
2
)(y
21
23y
20
+ ··· y 1)
c
9
((y
2
3y + 1)
2
)(y
21
+ 37y
20
+ ··· y 1)
13