11n
16
(K11n
16
)
A knot diagram
1
Linearized knot diagam
5 1 8 2 3 10 11 4 1 8 7
Solving Sequence
7,11 3,8
4 1 2 10 6 5 9
c
7
c
3
c
11
c
2
c
10
c
6
c
5
c
9
c
1
, c
4
, c
8
Ideals for irreducible components
2
of X
par
I
u
1
= h2u
23
+ 7u
22
+ ··· + 2b 5u, 3u
23
11u
22
+ ··· + 2a + 8, u
24
+ 3u
23
+ ··· 5u 1i
I
u
2
= h−u
2
a + b, u
2
a + a
2
+ u
2
+ a u + 2, u
3
u
2
+ 2u 1i
* 2 irreducible components of dim
C
= 0, with total 30 representations.
1
The image of knot diagram is generated by the software Draw programme developed by An-
drew Bartholomew(http://www.layer8.co.uk/maths/draw/index.htm#Running-draw), where we modi-
fied some parts for our purpose(https://github.com/CATsTAILs/LinksPainter).
2
All coefficients of polynomials are rational numbers. But the coefficients are sometimes approximated
in decimal forms when there is not enough margin.
1
I. I
u
1
=
h2u
23
+7u
22
+· · ·+2b5u, 3u
23
11u
22
+· · ·+2a+8, u
24
+3u
23
+· · ·5u1i
(i) Arc colorings
a
7
=
1
0
a
11
=
0
u
a
3
=
3
2
u
23
+
11
2
u
22
+ ···
33
2
u 4
u
23
7
2
u
22
+ ··· +
21
2
u
2
+
5
2
u
a
8
=
1
u
2
a
4
=
3
2
u
23
+
9
2
u
22
+ ···
25
2
u 3
1
2
u
22
u
21
+ ···
5
2
u 1
a
1
=
u
u
a
2
=
2u
23
+ 6u
22
+ ···
27
2
u
7
2
3
2
u
23
4u
22
+ ···
1
2
u
1
2
a
10
=
u
u
3
+ u
a
6
=
u
4
u
2
+ 1
u
6
2u
4
u
2
a
5
=
1
2
u
23
+
3
2
u
22
+ ···
15
2
u + 1
1
2
u
22
u
21
+ ··· +
7
2
u
2
1
2
u
a
9
=
u
5
+ 2u
3
+ u
u
5
u
3
+ u
a
9
=
u
5
+ 2u
3
+ u
u
5
u
3
+ u
(ii) Obstruction class = 1
(iii) Cusp Shapes
= 2u
23
9
2
u
22
45
2
u
21
40u
20
105u
19
307
2
u
18
527
2
u
17
325u
16
757
2
u
15
803
2
u
14
589
2
u
13
531
2
u
12
90u
11
75
2
u
10
+3u
9
+
129
2
u
8
35u
7
+
15
2
u
6
89
2
u
5
57u
4
11u
3
67
2
u
2
3
2
2
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
4
u
24
+ 4u
23
+ ··· + 8u + 1
c
2
u
24
+ 16u
23
+ ··· 16u + 1
c
3
, c
8
u
24
u
23
+ ··· 96u 64
c
5
u
24
4u
23
+ ··· + 2u + 1
c
6
u
24
+ 3u
23
+ ··· + u 1
c
7
, c
10
, c
11
u
24
3u
23
+ ··· + 5u 1
c
9
u
24
13u
23
+ ··· 995u + 563
3
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
4
y
24
+ 16y
23
+ ··· 16y + 1
c
2
y
24
12y
23
+ ··· 612y + 1
c
3
, c
8
y
24
35y
23
+ ··· 13312y + 4096
c
5
y
24
40y
23
+ ··· 16y + 1
c
6
y
24
33y
23
+ ··· 11y + 1
c
7
, c
10
, c
11
y
24
+ 19y
23
+ ··· 11y + 1
c
9
y
24
53y
23
+ ··· + 17132945y + 316969
4
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.977245 + 0.071776I
a = 0.150461 + 0.477664I
b = 1.86833 + 0.85025I
13.8937 + 5.6522I 11.88129 3.05170I
u = 0.977245 0.071776I
a = 0.150461 0.477664I
b = 1.86833 0.85025I
13.8937 5.6522I 11.88129 + 3.05170I
u = 0.944342
a = 0.374599
b = 1.57977
9.62200 9.45700
u = 0.132356 + 1.101640I
a = 0.224192 1.262680I
b = 1.38202 + 0.85732I
2.09684 + 3.39237I 6.49952 2.22048I
u = 0.132356 1.101640I
a = 0.224192 + 1.262680I
b = 1.38202 0.85732I
2.09684 3.39237I 6.49952 + 2.22048I
u = 0.369901 + 1.056050I
a = 0.19239 1.75435I
b = 0.509437 + 0.688724I
1.33599 3.11324I 9.44737 + 3.66544I
u = 0.369901 1.056050I
a = 0.19239 + 1.75435I
b = 0.509437 0.688724I
1.33599 + 3.11324I 9.44737 3.66544I
u = 0.023030 + 1.170740I
a = 0.00332 + 1.52505I
b = 0.53462 1.45060I
3.34786 1.42933I 3.02808 + 3.24576I
u = 0.023030 1.170740I
a = 0.00332 1.52505I
b = 0.53462 + 1.45060I
3.34786 + 1.42933I 3.02808 3.24576I
u = 0.736962 + 0.245534I
a = 0.482708 + 0.172356I
b = 1.141730 0.517295I
3.71809 1.00013I 12.92204 + 1.61108I
5
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.736962 0.245534I
a = 0.482708 0.172356I
b = 1.141730 + 0.517295I
3.71809 + 1.00013I 12.92204 1.61108I
u = 0.149866 + 1.301080I
a = 0.468754 + 1.001100I
b = 0.632329 1.109160I
3.26690 2.11293I 4.50894 + 4.47286I
u = 0.149866 1.301080I
a = 0.468754 1.001100I
b = 0.632329 + 1.109160I
3.26690 + 2.11293I 4.50894 4.47286I
u = 0.521270 + 1.255460I
a = 1.48874 0.97432I
b = 1.105310 0.534231I
10.25040 0.34153I 9.34191 0.16934I
u = 0.521270 1.255460I
a = 1.48874 + 0.97432I
b = 1.105310 + 0.534231I
10.25040 + 0.34153I 9.34191 + 0.16934I
u = 0.461477 + 1.300210I
a = 0.98110 + 1.48411I
b = 1.37119 0.77637I
5.57948 + 5.01306I 6.18016 2.85769I
u = 0.461477 1.300210I
a = 0.98110 1.48411I
b = 1.37119 + 0.77637I
5.57948 5.01306I 6.18016 + 2.85769I
u = 0.24692 + 1.39353I
a = 1.57305 + 0.00181I
b = 2.02058 0.67462I
1.55911 4.48321I 9.00126 + 3.05253I
u = 0.24692 1.39353I
a = 1.57305 0.00181I
b = 2.02058 + 0.67462I
1.55911 + 4.48321I 9.00126 3.05253I
u = 0.45937 + 1.35651I
a = 1.05212 2.06998I
b = 2.35956 + 1.45257I
9.4212 + 10.7764I 8.42021 5.67335I
6
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.45937 1.35651I
a = 1.05212 + 2.06998I
b = 2.35956 1.45257I
9.4212 10.7764I 8.42021 + 5.67335I
u = 0.450904
a = 0.305459
b = 0.393799
0.785516 12.5270
u = 0.228245 + 0.158994I
a = 0.02603 2.87156I
b = 0.322979 0.586238I
0.34648 1.75564I 2.27719 + 2.42480I
u = 0.228245 0.158994I
a = 0.02603 + 2.87156I
b = 0.322979 + 0.586238I
0.34648 + 1.75564I 2.27719 2.42480I
7
II. I
u
2
= h−u
2
a + b, u
2
a + a
2
+ u
2
+ a u + 2, u
3
u
2
+ 2u 1i
(i) Arc colorings
a
7
=
1
0
a
11
=
0
u
a
3
=
a
u
2
a
a
8
=
1
u
2
a
4
=
a
u
2
a
a
1
=
u
u
a
2
=
au + 2a
u
2
a + au a
a
10
=
u
u
2
u + 1
a
6
=
u
u
a
5
=
u
2
+ a + u + 1
u
2
a 2u + 1
a
9
=
1
u
2
a
9
=
1
u
2
(ii) Obstruction class = 1
(iii) Cusp Shapes = 5u
2
a + 3au 5u
2
4a + 5u 16
8
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
2
, c
5
(u
2
+ u + 1)
3
c
3
, c
8
u
6
c
4
(u
2
u + 1)
3
c
6
, c
9
(u
3
+ u
2
1)
2
c
7
(u
3
u
2
+ 2u 1)
2
c
10
, c
11
(u
3
+ u
2
+ 2u + 1)
2
9
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
2
, c
4
c
5
(y
2
+ y + 1)
3
c
3
, c
8
y
6
c
6
, c
9
(y
3
y
2
+ 2y 1)
2
c
7
, c
10
, c
11
(y
3
+ 3y
2
+ 2y 1)
2
10
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
2
1(vol +
1CS) Cusp shape
u = 0.215080 + 1.307140I
a = 0.818128 + 0.292480I
b = 1.52448 0.02619I
3.02413 0.79824I 6.43615 0.68567I
u = 0.215080 + 1.307140I
a = 0.155769 0.854759I
b = 0.73956 + 1.33333I
3.02413 4.85801I 2.88198 + 6.08229I
u = 0.215080 1.307140I
a = 0.818128 0.292480I
b = 1.52448 + 0.02619I
3.02413 + 0.79824I 6.43615 + 0.68567I
u = 0.215080 1.307140I
a = 0.155769 + 0.854759I
b = 0.73956 1.33333I
3.02413 + 4.85801I 2.88198 6.08229I
u = 0.569840
a = 0.662359 + 1.147240I
b = 0.215080 + 0.372529I
1.11345 + 2.02988I 12.18187 4.49037I
u = 0.569840
a = 0.662359 1.147240I
b = 0.215080 0.372529I
1.11345 2.02988I 12.18187 + 4.49037I
11
III. u-Polynomials
Crossings u-Polynomials at each crossing
c
1
((u
2
+ u + 1)
3
)(u
24
+ 4u
23
+ ··· + 8u + 1)
c
2
((u
2
+ u + 1)
3
)(u
24
+ 16u
23
+ ··· 16u + 1)
c
3
, c
8
u
6
(u
24
u
23
+ ··· 96u 64)
c
4
((u
2
u + 1)
3
)(u
24
+ 4u
23
+ ··· + 8u + 1)
c
5
((u
2
+ u + 1)
3
)(u
24
4u
23
+ ··· + 2u + 1)
c
6
((u
3
+ u
2
1)
2
)(u
24
+ 3u
23
+ ··· + u 1)
c
7
((u
3
u
2
+ 2u 1)
2
)(u
24
3u
23
+ ··· + 5u 1)
c
9
((u
3
+ u
2
1)
2
)(u
24
13u
23
+ ··· 995u + 563)
c
10
, c
11
((u
3
+ u
2
+ 2u + 1)
2
)(u
24
3u
23
+ ··· + 5u 1)
12
IV. Riley Polynomials
Crossings Riley Polynomials at each crossing
c
1
, c
4
((y
2
+ y + 1)
3
)(y
24
+ 16y
23
+ ··· 16y + 1)
c
2
((y
2
+ y + 1)
3
)(y
24
12y
23
+ ··· 612y + 1)
c
3
, c
8
y
6
(y
24
35y
23
+ ··· 13312y + 4096)
c
5
((y
2
+ y + 1)
3
)(y
24
40y
23
+ ··· 16y + 1)
c
6
((y
3
y
2
+ 2y 1)
2
)(y
24
33y
23
+ ··· 11y + 1)
c
7
, c
10
, c
11
((y
3
+ 3y
2
+ 2y 1)
2
)(y
24
+ 19y
23
+ ··· 11y + 1)
c
9
((y
3
y
2
+ 2y 1)
2
)(y
24
53y
23
+ ··· + 1.71329 × 10
7
y + 316969)
13