11n
17
(K11n
17
)
A knot diagram
1
Linearized knot diagam
5 1 9 2 3 11 10 3 6 7 9
Solving Sequence
6,11 3,7
5 10 9 4 1 2 8
c
6
c
5
c
10
c
9
c
3
c
11
c
2
c
8
c
1
, c
4
, c
7
Ideals for irreducible components
2
of X
par
I
u
1
= hu
28
2u
27
+ ··· + 2b 3, 3u
28
+ 8u
27
+ ··· + 2a + 12, u
29
3u
28
+ ··· 4u + 1i
I
u
2
= h−au + b, u
2
a + a
2
au + 2u
2
2a + u + 3, u
3
+ u
2
+ 2u + 1i
* 2 irreducible components of dim
C
= 0, with total 35 representations.
1
The image of knot diagram is generated by the software Draw programme developed by An-
drew Bartholomew(http://www.layer8.co.uk/maths/draw/index.htm#Running-draw), where we modi-
fied some parts for our purpose(https://github.com/CATsTAILs/LinksPainter).
2
All coefficients of polynomials are rational numbers. But the coefficients are sometimes approximated
in decimal forms when there is not enough margin.
1
I. I
u
1
=
hu
28
2u
27
+· · ·+2b3, 3u
28
+8u
27
+· · ·+2a+12, u
29
3u
28
+· · ·4u+1i
(i) Arc colorings
a
6
=
1
0
a
11
=
0
u
a
3
=
3
2
u
28
4u
27
+ ··· + 8u 6
1
2
u
28
+ u
27
+ ··· 8u
2
+
3
2
a
7
=
1
u
2
a
5
=
1
2
u
28
+ u
27
+ ··· 6u + 1
1
2
u
28
u
27
+ ··· + 2u
1
2
a
10
=
u
u
3
+ u
a
9
=
u
3
2u
u
3
+ u
a
4
=
1
2
u
28
2u
27
+ ··· + 6u 6
1
2
u
28
u
27
+ ··· + u +
3
2
a
1
=
u
7
+ 4u
5
+ 4u
3
u
7
3u
5
2u
3
+ u
a
2
=
3u
28
7u
27
+ ··· + 11u
13
2
5
2
u
28
+ 7u
27
+ ··· 6u +
7
2
a
8
=
u
2
+ 1
u
4
2u
2
a
8
=
u
2
+ 1
u
4
2u
2
(ii) Obstruction class = 1
(iii) Cusp Shapes = 2u
28
+
7
2
u
27
+ ···
33
2
u +
19
2
2
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
4
u
29
+ 4u
28
+ ··· + u 1
c
2
u
29
+ 18u
28
+ ··· + 9u 1
c
3
, c
8
u
29
u
28
+ ··· 32u 64
c
5
u
29
4u
28
+ ··· + 7u 1
c
6
, c
7
, c
10
u
29
+ 3u
28
+ ··· 4u 1
c
9
u
29
3u
28
+ ··· 244u 73
c
11
u
29
+ 3u
28
+ ··· + 8u
2
1
3
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
4
y
29
+ 18y
28
+ ··· + 9y 1
c
2
y
29
10y
28
+ ··· + 425y 1
c
3
, c
8
y
29
+ 35y
28
+ ··· 31744y 4096
c
5
y
29
38y
28
+ ··· + 9y 1
c
6
, c
7
, c
10
y
29
+ 29y
28
+ ··· + 16y 1
c
9
y
29
+ 17y
28
+ ··· + 23912y 5329
c
11
y
29
+ 37y
28
+ ··· + 16y 1
4
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.691423 + 0.598710I
a = 1.37569 1.31340I
b = 1.73753 + 0.08448I
8.85458 2.60938I 2.88623 + 0.30936I
u = 0.691423 0.598710I
a = 1.37569 + 1.31340I
b = 1.73753 0.08448I
8.85458 + 2.60938I 2.88623 0.30936I
u = 0.770996 + 0.462752I
a = 1.67161 1.26096I
b = 1.87232 + 0.19865I
8.40111 + 7.50786I 3.89559 5.68378I
u = 0.770996 0.462752I
a = 1.67161 + 1.26096I
b = 1.87232 0.19865I
8.40111 7.50786I 3.89559 + 5.68378I
u = 0.690364 + 0.493803I
a = 1.54905 + 1.40959I
b = 1.76547 0.20820I
4.66644 + 2.28896I 6.38324 2.89322I
u = 0.690364 0.493803I
a = 1.54905 1.40959I
b = 1.76547 + 0.20820I
4.66644 2.28896I 6.38324 + 2.89322I
u = 0.171803 + 1.253430I
a = 0.337041 + 0.105101I
b = 0.073833 + 0.440514I
2.92626 2.06352I 3.82434 + 4.59366I
u = 0.171803 1.253430I
a = 0.337041 0.105101I
b = 0.073833 0.440514I
2.92626 + 2.06352I 3.82434 4.59366I
u = 0.674782 + 0.131684I
a = 0.108599 0.371194I
b = 0.122161 0.236174I
0.280276 0.752914I 5.99242 + 0.52273I
u = 0.674782 0.131684I
a = 0.108599 + 0.371194I
b = 0.122161 + 0.236174I
0.280276 + 0.752914I 5.99242 0.52273I
5
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.019678 + 1.322720I
a = 0.737573 0.279772I
b = 0.384574 + 0.970095I
3.02767 1.44830I 4.95474 + 3.01169I
u = 0.019678 1.322720I
a = 0.737573 + 0.279772I
b = 0.384574 0.970095I
3.02767 + 1.44830I 4.95474 3.01169I
u = 0.297090 + 1.319120I
a = 0.044330 0.313521I
b = 0.400401 0.151621I
4.26542 4.32252I 0.05495 + 2.76648I
u = 0.297090 1.319120I
a = 0.044330 + 0.313521I
b = 0.400401 + 0.151621I
4.26542 + 4.32252I 0.05495 2.76648I
u = 0.070374 + 1.382890I
a = 0.882690 + 0.761515I
b = 0.99097 1.27426I
4.31077 + 3.55507I 1.62564 2.30473I
u = 0.070374 1.382890I
a = 0.882690 0.761515I
b = 0.99097 + 1.27426I
4.31077 3.55507I 1.62564 + 2.30473I
u = 0.300475 + 0.478492I
a = 0.156143 + 0.882607I
b = 0.469237 + 0.190488I
1.43996 2.11719I 2.79129 + 5.41296I
u = 0.300475 0.478492I
a = 0.156143 0.882607I
b = 0.469237 0.190488I
1.43996 + 2.11719I 2.79129 5.41296I
u = 0.11472 + 1.46953I
a = 0.292500 + 0.496633I
b = 0.763375 0.372865I
7.73410 3.73497I 0. + 3.25156I
u = 0.11472 1.46953I
a = 0.292500 0.496633I
b = 0.763375 + 0.372865I
7.73410 + 3.73497I 0. 3.25156I
6
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.24380 + 1.50275I
a = 0.103696 + 1.362120I
b = 2.02164 0.48792I
11.15070 + 5.70562I 3.18778 2.80294I
u = 0.24380 1.50275I
a = 0.103696 1.362120I
b = 2.02164 + 0.48792I
11.15070 5.70562I 3.18778 + 2.80294I
u = 0.28209 + 1.50525I
a = 0.024600 1.383480I
b = 2.08942 + 0.35324I
14.7787 + 11.3588I 0.97389 5.82372I
u = 0.28209 1.50525I
a = 0.024600 + 1.383480I
b = 2.08942 0.35324I
14.7787 11.3588I 0.97389 + 5.82372I
u = 0.21267 + 1.54249I
a = 0.131402 1.205960I
b = 1.83224 + 0.45916I
15.9085 + 0.6657I 0
u = 0.21267 1.54249I
a = 0.131402 + 1.205960I
b = 1.83224 0.45916I
15.9085 0.6657I 0
u = 0.417634
a = 0.553347
b = 0.231097
0.741502 13.5070
u = 0.325642 + 0.098864I
a = 0.41093 + 3.39717I
b = 0.469675 1.065640I
0.45415 + 2.26174I 0.65884 5.12612I
u = 0.325642 0.098864I
a = 0.41093 3.39717I
b = 0.469675 + 1.065640I
0.45415 2.26174I 0.65884 + 5.12612I
7
II. I
u
2
= h−au + b, u
2
a + a
2
au + 2u
2
2a + u + 3, u
3
+ u
2
+ 2u + 1i
(i) Arc colorings
a
6
=
1
0
a
11
=
0
u
a
3
=
a
au
a
7
=
1
u
2
a
5
=
u
2
+ a u 1
au + 1
a
10
=
u
u
2
u 1
a
9
=
u
2
+ 1
u
2
u 1
a
4
=
a
au
a
1
=
1
0
a
2
=
au + a
au
a
8
=
u
2
+ 1
u
2
u 1
a
8
=
u
2
+ 1
u
2
u 1
(ii) Obstruction class = 1
(iii) Cusp Shapes = u
2
a 4au + 5u
2
a + 5u + 12
8
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
2
, c
5
(u
2
+ u + 1)
3
c
3
, c
8
u
6
c
4
(u
2
u + 1)
3
c
6
, c
7
(u
3
+ u
2
+ 2u + 1)
2
c
9
, c
11
(u
3
+ u
2
1)
2
c
10
(u
3
u
2
+ 2u 1)
2
9
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
2
, c
4
c
5
(y
2
+ y + 1)
3
c
3
, c
8
y
6
c
6
, c
7
, c
10
(y
3
+ 3y
2
+ 2y 1)
2
c
9
, c
11
(y
3
y
2
+ 2y 1)
2
10
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
2
1(vol +
1CS) Cusp shape
u = 0.215080 + 1.307140I
a = 0.706350 + 0.266290I
b = 0.500000 + 0.866025I
3.02413 4.85801I 6.43615 + 6.24253I
u = 0.215080 + 1.307140I
a = 0.583789 + 0.478572I
b = 0.500000 0.866025I
3.02413 0.79824I 2.88198 0.84592I
u = 0.215080 1.307140I
a = 0.706350 0.266290I
b = 0.500000 0.866025I
3.02413 + 4.85801I 6.43615 6.24253I
u = 0.215080 1.307140I
a = 0.583789 0.478572I
b = 0.500000 + 0.866025I
3.02413 + 0.79824I 2.88198 + 0.84592I
u = 0.569840
a = 0.87744 + 1.51977I
b = 0.500000 0.866025I
1.11345 2.02988I 12.18187 + 2.43783I
u = 0.569840
a = 0.87744 1.51977I
b = 0.500000 + 0.866025I
1.11345 + 2.02988I 12.18187 2.43783I
11
III. u-Polynomials
Crossings u-Polynomials at each crossing
c
1
((u
2
+ u + 1)
3
)(u
29
+ 4u
28
+ ··· + u 1)
c
2
((u
2
+ u + 1)
3
)(u
29
+ 18u
28
+ ··· + 9u 1)
c
3
, c
8
u
6
(u
29
u
28
+ ··· 32u 64)
c
4
((u
2
u + 1)
3
)(u
29
+ 4u
28
+ ··· + u 1)
c
5
((u
2
+ u + 1)
3
)(u
29
4u
28
+ ··· + 7u 1)
c
6
, c
7
((u
3
+ u
2
+ 2u + 1)
2
)(u
29
+ 3u
28
+ ··· 4u 1)
c
9
((u
3
+ u
2
1)
2
)(u
29
3u
28
+ ··· 244u 73)
c
10
((u
3
u
2
+ 2u 1)
2
)(u
29
+ 3u
28
+ ··· 4u 1)
c
11
((u
3
+ u
2
1)
2
)(u
29
+ 3u
28
+ ··· + 8u
2
1)
12
IV. Riley Polynomials
Crossings Riley Polynomials at each crossing
c
1
, c
4
((y
2
+ y + 1)
3
)(y
29
+ 18y
28
+ ··· + 9y 1)
c
2
((y
2
+ y + 1)
3
)(y
29
10y
28
+ ··· + 425y 1)
c
3
, c
8
y
6
(y
29
+ 35y
28
+ ··· 31744y 4096)
c
5
((y
2
+ y + 1)
3
)(y
29
38y
28
+ ··· + 9y 1)
c
6
, c
7
, c
10
((y
3
+ 3y
2
+ 2y 1)
2
)(y
29
+ 29y
28
+ ··· + 16y 1)
c
9
((y
3
y
2
+ 2y 1)
2
)(y
29
+ 17y
28
+ ··· + 23912y 5329)
c
11
((y
3
y
2
+ 2y 1)
2
)(y
29
+ 37y
28
+ ··· + 16y 1)
13