11n
22
(K11n
22
)
A knot diagram
1
Linearized knot diagam
4 1 6 2 9 4 5 11 6 8 10
Solving Sequence
5,9
6
2,10
4 7 1 3 11 8
c
5
c
9
c
4
c
6
c
1
c
3
c
11
c
8
c
2
, c
7
, c
10
Ideals for irreducible components
2
of X
par
I
u
1
= h1.10514 × 10
39
u
35
+ 3.11173 × 10
39
u
34
+ ··· + 2.41739 × 10
40
b + 4.96908 × 10
40
,
9.97702 × 10
39
u
35
+ 3.04436 × 10
39
u
34
+ ··· + 4.83478 × 10
40
a + 6.03959 × 10
39
, u
36
+ 2u
35
+ ··· 4u + 8i
I
u
2
= hb + 1, u
5
2u
3
+ u
2
+ a + 2u, u
6
u
5
u
4
+ 2u
3
u + 1i
I
v
1
= ha, v
2
+ b 3v + 1, v
3
+ 2v
2
3v + 1i
* 3 irreducible components of dim
C
= 0, with total 45 representations.
1
The image of knot diagram is generated by the software Draw programme developed by An-
drew Bartholomew(http://www.layer8.co.uk/maths/draw/index.htm#Running-draw), where we modi-
fied some parts for our purpose(https://github.com/CATsTAILs/LinksPainter).
2
All coefficients of polynomials are rational numbers. But the coefficients are sometimes approximated
in decimal forms when there is not enough margin.
1
I.
I
u
1
= h1.11 × 10
39
u
35
+ 3.11 × 10
39
u
34
+ · · · + 2.42 × 10
40
b + 4.97 × 10
40
, 9.98 ×
10
39
u
35
+3.04×10
39
u
34
+· · ·+4.83×10
40
a+6.04×10
39
, u
36
+2u
35
+· · ·4u+8i
(i) Arc colorings
a
5
=
1
0
a
9
=
0
u
a
6
=
1
u
2
a
2
=
0.206359u
35
0.0629680u
34
+ ··· + 2.74530u 0.124920
0.0457161u
35
0.128723u
34
+ ··· + 2.35374u 2.05556
a
10
=
u
u
3
+ u
a
4
=
0.427443u
35
+ 0.372711u
34
+ ··· + 0.384288u + 4.31112
0.198044u
35
+ 0.422790u
34
+ ··· 10.2169u + 3.38570
a
7
=
0.0303222u
35
+ 0.0626215u
34
+ ··· 2.77119u 0.192221
0.188410u
35
0.280513u
34
+ ··· + 8.45275u 2.80684
a
1
=
0.0303222u
35
+ 0.0626215u
34
+ ··· 2.77119u 0.192221
0.119317u
35
+ 0.288516u
34
+ ··· 8.21808u + 2.82265
a
3
=
1.17216u
35
+ 1.26150u
34
+ ··· 15.1808u + 11.5542
0.361331u
35
0.145692u
34
+ ··· 1.85662u 1.41937
a
11
=
0.0556923u
35
+ 0.131200u
34
+ ··· 4.42903u + 0.594050
0.223465u
35
+ 0.365609u
34
+ ··· 9.74431u + 3.75163
a
8
=
0.158088u
35
0.217892u
34
+ ··· + 5.68156u 2.99906
0.188410u
35
0.280513u
34
+ ··· + 8.45275u 2.80684
a
8
=
0.158088u
35
0.217892u
34
+ ··· + 5.68156u 2.99906
0.188410u
35
0.280513u
34
+ ··· + 8.45275u 2.80684
(ii) Obstruction class = 1
(iii) Cusp Shapes = 0.408352u
35
+ 0.642649u
34
+ ··· 18.9306u 3.95860
2
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
4
u
36
8u
35
+ ··· 6u + 1
c
2
u
36
+ 8u
35
+ ··· + 22u + 1
c
3
, c
6
u
36
2u
35
+ ··· 384u
2
64
c
5
, c
9
u
36
2u
35
+ ··· + 4u + 8
c
7
u
36
+ 3u
35
+ ··· u 1
c
8
, c
10
u
36
5u
35
+ ··· + 18u 1
c
11
u
36
+ 15u
35
+ ··· + 218u + 1
3
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
4
y
36
8y
35
+ ··· 22y + 1
c
2
y
36
+ 48y
35
+ ··· 22y + 1
c
3
, c
6
y
36
+ 42y
35
+ ··· + 49152y + 4096
c
5
, c
9
y
36
24y
35
+ ··· 1488y + 64
c
7
y
36
45y
35
+ ··· 5y + 1
c
8
, c
10
y
36
15y
35
+ ··· 218y + 1
c
11
y
36
+ 17y
35
+ ··· 43646y + 1
4
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.876781 + 0.467791I
a = 0.771077 0.499574I
b = 0.458159 + 0.388133I
1.44120 1.68807I 1.23787 + 2.98942I
u = 0.876781 0.467791I
a = 0.771077 + 0.499574I
b = 0.458159 0.388133I
1.44120 + 1.68807I 1.23787 2.98942I
u = 0.562796 + 0.711448I
a = 0.798144 + 0.463491I
b = 0.364530 + 0.110500I
2.24151 1.11055I 4.16932 + 0.85691I
u = 0.562796 0.711448I
a = 0.798144 0.463491I
b = 0.364530 0.110500I
2.24151 + 1.11055I 4.16932 0.85691I
u = 1.149490 + 0.105847I
a = 0.69354 2.02575I
b = 0.973276 + 0.948498I
3.87982 3.49544I 3.17810 + 2.67745I
u = 1.149490 0.105847I
a = 0.69354 + 2.02575I
b = 0.973276 0.948498I
3.87982 + 3.49544I 3.17810 2.67745I
u = 1.151290 + 0.136717I
a = 0.050534 + 0.984743I
b = 1.156680 0.402174I
0.196716 + 1.191220I 3.75367 2.76129I
u = 1.151290 0.136717I
a = 0.050534 0.984743I
b = 1.156680 + 0.402174I
0.196716 1.191220I 3.75367 + 2.76129I
u = 1.012080 + 0.596945I
a = 0.812755 + 0.396273I
b = 0.666828 0.220770I
0.90609 + 6.15586I 1.06826 8.23147I
u = 1.012080 0.596945I
a = 0.812755 0.396273I
b = 0.666828 + 0.220770I
0.90609 6.15586I 1.06826 + 8.23147I
5
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.132013 + 0.796085I
a = 0.530905 + 0.123801I
b = 0.363392 0.400261I
1.17315 1.43837I 4.87286 + 4.95965I
u = 0.132013 0.796085I
a = 0.530905 0.123801I
b = 0.363392 + 0.400261I
1.17315 + 1.43837I 4.87286 4.95965I
u = 1.188780 + 0.305866I
a = 0.477194 + 1.088200I
b = 1.293690 0.259633I
0.19217 3.89522I 3.75583 + 3.33691I
u = 1.188780 0.305866I
a = 0.477194 1.088200I
b = 1.293690 + 0.259633I
0.19217 + 3.89522I 3.75583 3.33691I
u = 0.114291 + 1.235990I
a = 0.468464 0.379839I
b = 0.919988 + 1.004770I
5.76584 0.88624I 3.08966 0.19737I
u = 0.114291 1.235990I
a = 0.468464 + 0.379839I
b = 0.919988 1.004770I
5.76584 + 0.88624I 3.08966 + 0.19737I
u = 0.299008 + 1.238570I
a = 0.478366 + 0.338536I
b = 1.040320 0.944822I
5.37775 + 6.26456I 3.90154 4.74503I
u = 0.299008 1.238570I
a = 0.478366 0.338536I
b = 1.040320 + 0.944822I
5.37775 6.26456I 3.90154 + 4.74503I
u = 1.282480 + 0.078351I
a = 0.406471 + 1.116480I
b = 0.272152 0.810511I
3.60869 0.40430I 0.180320 + 0.512361I
u = 1.282480 0.078351I
a = 0.406471 1.116480I
b = 0.272152 + 0.810511I
3.60869 + 0.40430I 0.180320 0.512361I
6
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 1.300550 + 0.426752I
a = 0.110638 1.292420I
b = 0.510437 + 0.832243I
2.60051 + 6.07581I 2.58564 6.03076I
u = 1.300550 0.426752I
a = 0.110638 + 1.292420I
b = 0.510437 0.832243I
2.60051 6.07581I 2.58564 + 6.03076I
u = 0.607835 + 0.068419I
a = 0.588549 + 0.355335I
b = 0.895986 0.665316I
1.96162 + 2.57896I 2.96196 0.32171I
u = 0.607835 0.068419I
a = 0.588549 0.355335I
b = 0.895986 + 0.665316I
1.96162 2.57896I 2.96196 + 0.32171I
u = 0.203337 + 0.520719I
a = 4.57730 + 1.89887I
b = 1.060050 + 0.082275I
3.21515 + 0.53565I 7.7422 + 12.1700I
u = 0.203337 0.520719I
a = 4.57730 1.89887I
b = 1.060050 0.082275I
3.21515 0.53565I 7.7422 12.1700I
u = 0.529202
a = 4.14663
b = 0.467103
2.39731 2.58440
u = 1.45234 + 0.47903I
a = 0.18492 + 1.55929I
b = 1.12508 0.97464I
10.93880 + 6.87915I 0. 3.18853I
u = 1.45234 0.47903I
a = 0.18492 1.55929I
b = 1.12508 + 0.97464I
10.93880 6.87915I 0. + 3.18853I
u = 1.36361 + 0.70201I
a = 0.52721 1.55915I
b = 1.17133 + 0.91175I
8.7659 13.1890I 5.00000 + 7.32457I
7
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 1.36361 0.70201I
a = 0.52721 + 1.55915I
b = 1.17133 0.91175I
8.7659 + 13.1890I 5.00000 7.32457I
u = 1.51813 + 0.32802I
a = 0.632543 0.937060I
b = 0.89682 + 1.12852I
11.70850 0.74205I 0
u = 1.51813 0.32802I
a = 0.632543 + 0.937060I
b = 0.89682 1.12852I
11.70850 + 0.74205I 0
u = 1.43939 + 0.60179I
a = 0.705793 + 0.628179I
b = 0.790568 1.152680I
10.03080 5.72886I 5.00000 + 3.03607I
u = 1.43939 0.60179I
a = 0.705793 0.628179I
b = 0.790568 + 1.152680I
10.03080 + 5.72886I 5.00000 3.03607I
u = 0.262401
a = 1.77219
b = 0.825866
1.19842 8.63080
8
II. I
u
2
= hb + 1, u
5
2u
3
+ u
2
+ a + 2u, u
6
u
5
u
4
+ 2u
3
u + 1i
(i) Arc colorings
a
5
=
1
0
a
9
=
0
u
a
6
=
1
u
2
a
2
=
u
5
+ 2u
3
u
2
2u
1
a
10
=
u
u
3
+ u
a
4
=
u
5
+ 2u
3
u
2
2u + 1
1
a
7
=
1
u
2
a
1
=
1
0
a
3
=
u
5
+ 2u
3
u
2
2u + 1
1
a
11
=
u
4
+ u
2
1
u
5
u
4
2u
3
+ u
2
+ u 1
a
8
=
u
2
+ 1
u
2
a
8
=
u
2
+ 1
u
2
(ii) Obstruction class = 1
(iii) Cusp Shapes = u
5
5u
4
u
3
+ 7u
2
4u 12
9
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
(u 1)
6
c
2
, c
4
(u + 1)
6
c
3
, c
6
u
6
c
5
, c
10
u
6
u
5
u
4
+ 2u
3
u + 1
c
7
u
6
3u
5
+ 5u
4
4u
3
+ 2u
2
u + 1
c
8
, c
9
u
6
+ u
5
u
4
2u
3
+ u + 1
c
11
u
6
+ 3u
5
+ 5u
4
+ 4u
3
+ 2u
2
+ u + 1
10
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
2
, c
4
(y 1)
6
c
3
, c
6
y
6
c
5
, c
8
, c
9
c
10
y
6
3y
5
+ 5y
4
4y
3
+ 2y
2
y + 1
c
7
, c
11
y
6
+ y
5
+ 5y
4
+ 6y
2
+ 3y + 1
11
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
2
1(vol +
1CS) Cusp shape
u = 1.002190 + 0.295542I
a = 0.230593 + 0.497010I
b = 1.00000
0.245672 0.924305I 3.44826 + 0.47256I
u = 1.002190 0.295542I
a = 0.230593 0.497010I
b = 1.00000
0.245672 + 0.924305I 3.44826 0.47256I
u = 0.428243 + 0.664531I
a = 1.66103 1.45708I
b = 1.00000
3.53554 0.92430I 13.66012 + 2.42665I
u = 0.428243 0.664531I
a = 1.66103 + 1.45708I
b = 1.00000
3.53554 + 0.92430I 13.66012 2.42665I
u = 1.073950 + 0.558752I
a = 0.608378 0.558752I
b = 1.00000
1.64493 + 5.69302I 8.89162 3.92918I
u = 1.073950 0.558752I
a = 0.608378 + 0.558752I
b = 1.00000
1.64493 5.69302I 8.89162 + 3.92918I
12
III. I
v
1
= ha, v
2
+ b 3v + 1, v
3
+ 2v
2
3v + 1i
(i) Arc colorings
a
5
=
1
0
a
9
=
v
0
a
6
=
1
0
a
2
=
0
v
2
+ 3v 1
a
10
=
v
0
a
4
=
1
2v
2
5v + 3
a
7
=
2v
2
5v + 4
v
2
+ 2v 3
a
1
=
v
2
+ 3v 1
v
2
2v + 3
a
3
=
2v
2
5v + 4
2v
2
5v + 3
a
11
=
v
2
+ 4v 1
v
2
2v + 3
a
8
=
v
2
3v + 1
v
2
+ 2v 3
a
8
=
v
2
3v + 1
v
2
+ 2v 3
(ii) Obstruction class = 1
(iii) Cusp Shapes = 6v
2
+ 19v 21
13
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
u
3
+ u
2
1
c
2
, c
6
u
3
+ u
2
+ 2u + 1
c
3
u
3
u
2
+ 2u 1
c
4
u
3
u
2
+ 1
c
5
, c
9
u
3
c
7
u
3
3u
2
+ 2u + 1
c
8
(u 1)
3
c
10
, c
11
(u + 1)
3
14
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
4
y
3
y
2
+ 2y 1
c
2
, c
3
, c
6
y
3
+ 3y
2
+ 2y 1
c
5
, c
9
y
3
c
7
y
3
5y
2
+ 10y 1
c
8
, c
10
, c
11
(y 1)
3
15
(vi) Complex Volumes and Cusp Shapes
Solutions to I
v
1
1(vol +
1CS) Cusp shape
v = 0.539798 + 0.182582I
a = 0
b = 0.877439 + 0.744862I
1.37919 2.82812I 9.19557 + 4.65175I
v = 0.539798 0.182582I
a = 0
b = 0.877439 0.744862I
1.37919 + 2.82812I 9.19557 4.65175I
v = 3.07960
a = 0
b = 0.754878
2.75839 22.6090
16
IV. u-Polynomials
Crossings u-Polynomials at each crossing
c
1
((u 1)
6
)(u
3
+ u
2
1)(u
36
8u
35
+ ··· 6u + 1)
c
2
((u + 1)
6
)(u
3
+ u
2
+ 2u + 1)(u
36
+ 8u
35
+ ··· + 22u + 1)
c
3
u
6
(u
3
u
2
+ 2u 1)(u
36
2u
35
+ ··· 384u
2
64)
c
4
((u + 1)
6
)(u
3
u
2
+ 1)(u
36
8u
35
+ ··· 6u + 1)
c
5
u
3
(u
6
u
5
+ ··· u + 1)(u
36
2u
35
+ ··· + 4u + 8)
c
6
u
6
(u
3
+ u
2
+ 2u + 1)(u
36
2u
35
+ ··· 384u
2
64)
c
7
(u
3
3u
2
+ 2u + 1)(u
6
3u
5
+ 5u
4
4u
3
+ 2u
2
u + 1)
· (u
36
+ 3u
35
+ ··· u 1)
c
8
((u 1)
3
)(u
6
+ u
5
+ ··· + u + 1)(u
36
5u
35
+ ··· + 18u 1)
c
9
u
3
(u
6
+ u
5
+ ··· + u + 1)(u
36
2u
35
+ ··· + 4u + 8)
c
10
((u + 1)
3
)(u
6
u
5
+ ··· u + 1)(u
36
5u
35
+ ··· + 18u 1)
c
11
(u + 1)
3
(u
6
+ 3u
5
+ 5u
4
+ 4u
3
+ 2u
2
+ u + 1)
· (u
36
+ 15u
35
+ ··· + 218u + 1)
17
V. Riley Polynomials
Crossings Riley Polynomials at each crossing
c
1
, c
4
((y 1)
6
)(y
3
y
2
+ 2y 1)(y
36
8y
35
+ ··· 22y + 1)
c
2
((y 1)
6
)(y
3
+ 3y
2
+ 2y 1)(y
36
+ 48y
35
+ ··· 22y + 1)
c
3
, c
6
y
6
(y
3
+ 3y
2
+ 2y 1)(y
36
+ 42y
35
+ ··· + 49152y + 4096)
c
5
, c
9
y
3
(y
6
3y
5
+ ··· y + 1)(y
36
24y
35
+ ··· 1488y + 64)
c
7
(y
3
5y
2
+ 10y 1)(y
6
+ y
5
+ 5y
4
+ 6y
2
+ 3y + 1)
· (y
36
45y
35
+ ··· 5y + 1)
c
8
, c
10
(y 1)
3
(y
6
3y
5
+ 5y
4
4y
3
+ 2y
2
y + 1)
· (y
36
15y
35
+ ··· 218y + 1)
c
11
((y 1)
3
)(y
6
+ y
5
+ ··· + 3y + 1)(y
36
+ 17y
35
+ ··· 43646y + 1)
18