11n
25
(K11n
25
)
A knot diagram
1
Linearized knot diagam
4 1 8 2 8 10 3 11 1 6 9
Solving Sequence
1,10
9 11
3,8
4 2 5 7 6
c
9
c
11
c
8
c
3
c
1
c
4
c
7
c
6
c
2
, c
5
, c
10
Ideals for irreducible components
2
of X
par
I
u
1
= h−78512077u
27
145372804u
26
+ ··· + 67221149b 176175,
62468877u
27
129722654u
26
+ ··· + 67221149a + 343854265, u
28
+ 2u
27
+ ··· 5u + 1i
I
u
2
= hu
4
+ u
3
u
2
+ b u, u
4
+ u
3
2u
2
+ a u + 1, u
5
+ u
4
2u
3
u
2
+ u 1i
* 2 irreducible components of dim
C
= 0, with total 33 representations.
1
The image of knot diagram is generated by the software Draw programme developed by An-
drew Bartholomew(http://www.layer8.co.uk/maths/draw/index.htm#Running-draw), where we modi-
fied some parts for our purpose(https://github.com/CATsTAILs/LinksPainter).
2
All coefficients of polynomials are rational numbers. But the coefficients are sometimes approximated
in decimal forms when there is not enough margin.
1
I.
I
u
1
= h−7.85 × 10
7
u
27
1.45 × 10
8
u
26
+ · · · + 6.72 × 10
7
b 1.76 × 10
5
, 6.25 ×
10
7
u
27
1.30×10
8
u
26
+· · · +6.72×10
7
a+3.44×10
8
, u
28
+2u
27
+· · · 5u +1i
(i) Arc colorings
a
1
=
0
u
a
10
=
1
0
a
9
=
1
u
2
a
11
=
u
u
3
+ u
a
3
=
0.929304u
27
+ 1.92979u
26
+ ··· + 11.1441u 5.11527
1.16797u
27
+ 2.16261u
26
+ ··· + 2.86935u + 0.00262083
a
8
=
u
2
+ 1
u
4
2u
2
a
4
=
1.01767u
27
+ 2.01755u
26
+ ··· + 12.4640u 4.97118
0.885451u
27
+ 1.93727u
26
+ ··· + 3.16598u 0.0228994
a
2
=
0.929304u
27
+ 1.92979u
26
+ ··· + 11.1441u 5.11527
1.40015u
27
+ 2.23327u
26
+ ··· + 3.44274u + 0.0738023
a
5
=
0.823260u
27
+ 0.824473u
26
+ ··· + 0.360292u + 0.711827
2.02865u
27
1.42566u
26
+ ··· + 4.66019u 0.824392
a
7
=
1.43559u
27
1.43578u
26
+ ··· + 3.66414u 1.71740
1.00626u
27
+ 1.00303u
26
+ ··· 0.736587u + 0.00303364
a
6
=
2.44185u
27
2.43882u
26
+ ··· + 4.40073u 1.72043
1.00626u
27
+ 1.00303u
26
+ ··· 0.736587u + 0.00303364
a
6
=
2.44185u
27
2.43882u
26
+ ··· + 4.40073u 1.72043
1.00626u
27
+ 1.00303u
26
+ ··· 0.736587u + 0.00303364
(ii) Obstruction class = 1
(iii) Cusp Shapes =
337541215
67221149
u
27
737621299
67221149
u
26
+ ···
124989334
67221149
u
310642967
67221149
2
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
4
u
28
6u
27
+ ··· + 5u 1
c
2
u
28
+ 6u
27
+ ··· + 17u + 1
c
3
, c
7
u
28
+ 3u
27
+ ··· + 128u + 32
c
5
u
28
6u
27
+ ··· 3079u 1609
c
6
, c
10
u
28
2u
27
+ ··· + u 1
c
8
, c
9
, c
11
u
28
2u
27
+ ··· + 5u + 1
3
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
4
y
28
6y
27
+ ··· 17y + 1
c
2
y
28
+ 38y
27
+ ··· 17y + 1
c
3
, c
7
y
28
33y
27
+ ··· 14848y + 1024
c
5
y
28
+ 22y
27
+ ··· + 19658749y + 2588881
c
6
, c
10
y
28
+ 6y
27
+ ··· + 5y + 1
c
8
, c
9
, c
11
y
28
22y
27
+ ··· + 5y + 1
4
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.078918 + 0.962099I
a = 2.18951 + 0.08530I
b = 2.13157 + 0.38039I
7.91461 7.14026I 1.25171 + 4.70902I
u = 0.078918 0.962099I
a = 2.18951 0.08530I
b = 2.13157 0.38039I
7.91461 + 7.14026I 1.25171 4.70902I
u = 1.062800 + 0.195424I
a = 0.155091 0.173758I
b = 0.944249 + 0.890794I
2.13241 0.82619I 5.35184 1.04773I
u = 1.062800 0.195424I
a = 0.155091 + 0.173758I
b = 0.944249 0.890794I
2.13241 + 0.82619I 5.35184 + 1.04773I
u = 0.064858 + 0.917024I
a = 2.10546 0.51061I
b = 1.81015 0.32496I
8.51104 + 0.29713I 0.154356 0.088934I
u = 0.064858 0.917024I
a = 2.10546 + 0.51061I
b = 1.81015 + 0.32496I
8.51104 0.29713I 0.154356 + 0.088934I
u = 1.08514
a = 1.05851
b = 3.52629
3.64067 25.0750
u = 1.206550 + 0.074740I
a = 1.56629 0.83850I
b = 0.209734 + 0.919216I
5.80044 + 1.71298I 12.51650 3.41779I
u = 1.206550 0.074740I
a = 1.56629 + 0.83850I
b = 0.209734 0.919216I
5.80044 1.71298I 12.51650 + 3.41779I
u = 1.184170 + 0.243247I
a = 0.333050 1.009550I
b = 0.117217 + 0.500518I
2.65368 + 4.42550I 6.50791 7.50568I
5
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 1.184170 0.243247I
a = 0.333050 + 1.009550I
b = 0.117217 0.500518I
2.65368 4.42550I 6.50791 + 7.50568I
u = 0.429683 + 0.631440I
a = 0.286291 0.034580I
b = 0.231084 + 0.498413I
0.69638 1.96456I 1.12748 + 4.70329I
u = 0.429683 0.631440I
a = 0.286291 + 0.034580I
b = 0.231084 0.498413I
0.69638 + 1.96456I 1.12748 4.70329I
u = 1.29906
a = 0.104420
b = 0.740536
2.76755 1.63490
u = 1.238710 + 0.461764I
a = 1.08774 + 1.05934I
b = 1.71542 0.63051I
4.88950 + 4.61956I 3.15122 3.64430I
u = 1.238710 0.461764I
a = 1.08774 1.05934I
b = 1.71542 + 0.63051I
4.88950 4.61956I 3.15122 + 3.64430I
u = 1.236490 + 0.512229I
a = 0.561715 + 1.232250I
b = 2.01617 0.03791I
4.35345 + 1.91548I 3.75065 1.71492I
u = 1.236490 0.512229I
a = 0.561715 1.232250I
b = 2.01617 + 0.03791I
4.35345 1.91548I 3.75065 + 1.71492I
u = 1.338030 + 0.423130I
a = 0.503580 1.252560I
b = 1.76982 0.03806I
4.11604 5.09421I 3.90084 + 3.07789I
u = 1.338030 0.423130I
a = 0.503580 + 1.252560I
b = 1.76982 + 0.03806I
4.11604 + 5.09421I 3.90084 3.07789I
6
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 1.35468 + 0.45041I
a = 0.88989 1.31460I
b = 2.05008 + 0.73045I
3.42542 + 12.18300I 4.89577 7.01706I
u = 1.35468 0.45041I
a = 0.88989 + 1.31460I
b = 2.05008 0.73045I
3.42542 12.18300I 4.89577 + 7.01706I
u = 0.018893 + 0.524896I
a = 0.530824 0.538417I
b = 0.574926 + 0.352337I
0.76347 1.52310I 1.12747 + 4.03193I
u = 0.018893 0.524896I
a = 0.530824 + 0.538417I
b = 0.574926 0.352337I
0.76347 + 1.52310I 1.12747 4.03193I
u = 1.46446 + 0.20354I
a = 0.333881 0.215100I
b = 0.390847 + 0.079026I
6.89024 + 4.97150I 3.93501 6.51666I
u = 1.46446 0.20354I
a = 0.333881 + 0.215100I
b = 0.390847 0.079026I
6.89024 4.97150I 3.93501 + 6.51666I
u = 0.194298 + 0.209673I
a = 3.28968 + 1.85114I
b = 0.596766 + 1.022050I
1.90419 0.70187I 5.30439 2.49815I
u = 0.194298 0.209673I
a = 3.28968 1.85114I
b = 0.596766 1.022050I
1.90419 + 0.70187I 5.30439 + 2.49815I
7
II.
I
u
2
= hu
4
+u
3
u
2
+b u, u
4
+u
3
2u
2
+a u + 1, u
5
+u
4
2u
3
u
2
+u 1i
(i) Arc colorings
a
1
=
0
u
a
10
=
1
0
a
9
=
1
u
2
a
11
=
u
u
3
+ u
a
3
=
u
4
u
3
+ 2u
2
+ u 1
u
4
u
3
+ u
2
+ u
a
8
=
u
2
+ 1
u
4
2u
2
a
4
=
u
4
u
3
+ 2u
2
+ u 1
u
4
u
3
+ u
2
+ u
a
2
=
u
4
u
3
+ 2u
2
+ u 1
u
4
u
3
+ u
2
+ 2u
a
5
=
0
u
a
7
=
u
2
+ 1
u
4
2u
2
a
6
=
u
4
+ u
2
+ 1
u
4
2u
2
a
6
=
u
4
+ u
2
+ 1
u
4
2u
2
(ii) Obstruction class = 1
(iii) Cusp Shapes = 2u
4
5u
3
+ 2u
2
+ 8u 10
8
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
(u 1)
5
c
2
, c
4
(u + 1)
5
c
3
, c
7
u
5
c
5
u
5
3u
4
+ 4u
3
u
2
u + 1
c
6
u
5
u
4
+ 2u
3
u
2
+ u 1
c
8
, c
9
u
5
+ u
4
2u
3
u
2
+ u 1
c
10
u
5
+ u
4
+ 2u
3
+ u
2
+ u + 1
c
11
u
5
u
4
2u
3
+ u
2
+ u + 1
9
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
2
, c
4
(y 1)
5
c
3
, c
7
y
5
c
5
y
5
y
4
+ 8y
3
3y
2
+ 3y 1
c
6
, c
10
y
5
+ 3y
4
+ 4y
3
+ y
2
y 1
c
8
, c
9
, c
11
y
5
5y
4
+ 8y
3
3y
2
y 1
10
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
2
1(vol +
1CS) Cusp shape
u = 1.21774
a = 0.821196
b = 1.30408
4.04602 10.7190
u = 0.309916 + 0.549911I
a = 0.77780 + 1.38013I
b = 0.428550 + 1.039280I
1.97403 1.53058I 6.52924 + 5.40154I
u = 0.309916 0.549911I
a = 0.77780 1.38013I
b = 0.428550 1.039280I
1.97403 + 1.53058I 6.52924 5.40154I
u = 1.41878 + 0.21917I
a = 0.688402 + 0.106340I
b = 0.276511 + 0.728237I
7.51750 + 4.40083I 11.11126 1.16747I
u = 1.41878 0.21917I
a = 0.688402 0.106340I
b = 0.276511 0.728237I
7.51750 4.40083I 11.11126 + 1.16747I
11
III. u-Polynomials
Crossings u-Polynomials at each crossing
c
1
((u 1)
5
)(u
28
6u
27
+ ··· + 5u 1)
c
2
((u + 1)
5
)(u
28
+ 6u
27
+ ··· + 17u + 1)
c
3
, c
7
u
5
(u
28
+ 3u
27
+ ··· + 128u + 32)
c
4
((u + 1)
5
)(u
28
6u
27
+ ··· + 5u 1)
c
5
(u
5
3u
4
+ 4u
3
u
2
u + 1)(u
28
6u
27
+ ··· 3079u 1609)
c
6
(u
5
u
4
+ 2u
3
u
2
+ u 1)(u
28
2u
27
+ ··· + u 1)
c
8
, c
9
(u
5
+ u
4
2u
3
u
2
+ u 1)(u
28
2u
27
+ ··· + 5u + 1)
c
10
(u
5
+ u
4
+ 2u
3
+ u
2
+ u + 1)(u
28
2u
27
+ ··· + u 1)
c
11
(u
5
u
4
2u
3
+ u
2
+ u + 1)(u
28
2u
27
+ ··· + 5u + 1)
12
IV. Riley Polynomials
Crossings Riley Polynomials at each crossing
c
1
, c
4
((y 1)
5
)(y
28
6y
27
+ ··· 17y + 1)
c
2
((y 1)
5
)(y
28
+ 38y
27
+ ··· 17y + 1)
c
3
, c
7
y
5
(y
28
33y
27
+ ··· 14848y + 1024)
c
5
(y
5
y
4
+ 8y
3
3y
2
+ 3y 1)
· (y
28
+ 22y
27
+ ··· + 19658749y + 2588881)
c
6
, c
10
(y
5
+ 3y
4
+ 4y
3
+ y
2
y 1)(y
28
+ 6y
27
+ ··· + 5y + 1)
c
8
, c
9
, c
11
(y
5
5y
4
+ 8y
3
3y
2
y 1)(y
28
22y
27
+ ··· + 5y + 1)
13