11n
27
(K11n
27
)
A knot diagram
1
Linearized knot diagam
4 1 7 2 8 10 4 11 1 6 9
Solving Sequence
8,11
9
1,4
2 10 7 3 6 5
c
8
c
11
c
1
c
9
c
7
c
3
c
6
c
5
c
2
, c
4
, c
10
Ideals for irreducible components
2
of X
par
I
u
1
= h2085u
15
3383u
14
+ ··· + 4922b + 953, 953u
15
+ 5897u
14
+ ··· + 4922a + 34271,
u
16
4u
15
+ ··· 10u + 1i
I
u
2
= hb, u
2
+ a u + 1, u
5
+ u
4
2u
3
u
2
+ u 1i
I
u
3
= hb a 1, a
2
+ a 1, u 1i
* 3 irreducible components of dim
C
= 0, with total 23 representations.
1
The image of knot diagram is generated by the software Draw programme developed by An-
drew Bartholomew(http://www.layer8.co.uk/maths/draw/index.htm#Running-draw), where we modi-
fied some parts for our purpose(https://github.com/CATsTAILs/LinksPainter).
2
All coefficients of polynomials are rational numbers. But the coefficients are sometimes approximated
in decimal forms when there is not enough margin.
1
I. I
u
1
= h2085u
15
3383u
14
+ · · · + 4922b + 953, 953u
15
+ 5897u
14
+ · · · +
4922a + 34271, u
16
4u
15
+ · · · 10u + 1i
(i) Arc colorings
a
8
=
1
0
a
11
=
0
u
a
9
=
1
u
2
a
1
=
u
u
3
+ u
a
4
=
0.193620u
15
1.19809u
14
+ ··· 13.7284u 6.96282
0.423608u
15
+ 0.687322u
14
+ ··· 4.02662u 0.193620
a
2
=
0.108899u
15
0.139374u
14
+ ··· 12.8663u 4.79846
0.576392u
15
+ 1.31268u
14
+ ··· 4.97338u + 0.193620
a
10
=
u
2
+ 1
u
4
+ 2u
2
a
7
=
0.878505u
15
2.34579u
14
+ ··· 4.05607u 3.47664
1.00264u
15
2.16640u
14
+ ··· + 3.58818u 0.728769
a
3
=
0.0534336u
15
0.366315u
14
+ ··· 11.4854u 4.89740
0.340309u
15
0.439456u
14
+ ··· 2.29277u 0.129825
a
6
=
0.136936u
15
0.626981u
14
+ ··· 5.58228u 3.01463
0.576392u
15
+ 1.31268u
14
+ ··· 4.97338u + 0.193620
a
5
=
0.439456u
15
+ 0.685697u
14
+ ··· 10.5557u 2.82101
0.576392u
15
+ 1.31268u
14
+ ··· 4.97338u + 0.193620
a
5
=
0.439456u
15
+ 0.685697u
14
+ ··· 10.5557u 2.82101
0.576392u
15
+ 1.31268u
14
+ ··· 4.97338u + 0.193620
(ii) Obstruction class = 1
(iii) Cusp Shapes =
2411
2461
u
15
4233
2461
u
14
+ ··· +
28620
2461
u
24444
2461
2
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
4
u
16
7u
15
+ ··· + 3u + 1
c
2
u
16
+ 29u
15
+ ··· + 17u + 1
c
3
, c
7
u
16
+ 2u
15
+ ··· + 72u
2
32
c
5
u
16
3u
15
+ ··· + u 1
c
6
, c
10
u
16
2u
15
+ ··· 20u 4
c
8
, c
9
, c
11
u
16
4u
15
+ ··· 10u + 1
3
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
4
y
16
29y
15
+ ··· 17y + 1
c
2
y
16
77y
15
+ ··· 1761y + 1
c
3
, c
7
y
16
36y
15
+ ··· 4608y + 1024
c
5
y
16
37y
15
+ ··· 11y + 1
c
6
, c
10
y
16
+ 18y
15
+ ··· 168y + 16
c
8
, c
9
, c
11
y
16
20y
15
+ ··· 146y + 1
4
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.852448 + 0.278896I
a = 0.25417 1.55665I
b = 0.434441 + 0.614956I
3.23204 + 0.76102I 14.1078 + 3.1845I
u = 0.852448 0.278896I
a = 0.25417 + 1.55665I
b = 0.434441 0.614956I
3.23204 0.76102I 14.1078 3.1845I
u = 1.11713
a = 1.01314
b = 0.393183
2.15355 1.76420
u = 0.727902
a = 1.19391
b = 1.74112
10.0599 3.26620
u = 0.665595 + 1.107720I
a = 0.109829 0.996426I
b = 2.57424 + 0.30502I
16.5506 + 3.5813I 12.12116 2.15994I
u = 0.665595 1.107720I
a = 0.109829 + 0.996426I
b = 2.57424 0.30502I
16.5506 3.5813I 12.12116 + 2.15994I
u = 0.374592 + 0.413898I
a = 0.238036 0.835224I
b = 0.289006 + 0.411875I
0.428790 + 1.166930I 5.36023 5.57896I
u = 0.374592 0.413898I
a = 0.238036 + 0.835224I
b = 0.289006 0.411875I
0.428790 1.166930I 5.36023 + 5.57896I
u = 1.49641 + 0.19521I
a = 0.467729 0.212663I
b = 0.140592 0.934027I
6.69050 3.49798I 9.87558 + 1.25665I
u = 1.49641 0.19521I
a = 0.467729 + 0.212663I
b = 0.140592 + 0.934027I
6.69050 + 3.49798I 9.87558 1.25665I
5
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 1.70971
a = 2.04995
b = 2.70628
19.0073 12.9680
u = 1.67172 + 0.41923I
a = 1.56150 + 0.78878I
b = 2.44091 0.95623I
15.4222 9.3337I 13.42948 + 3.49093I
u = 1.67172 0.41923I
a = 1.56150 0.78878I
b = 2.44091 + 0.95623I
15.4222 + 9.3337I 13.42948 3.49093I
u = 1.73172 + 0.08246I
a = 1.31289 0.53629I
b = 1.88369 1.19369I
12.66300 2.31460I 13.80105 + 1.17558I
u = 1.73172 0.08246I
a = 1.31289 + 0.53629I
b = 1.88369 + 1.19369I
12.66300 + 2.31460I 13.80105 1.17558I
u = 0.0844975
a = 8.02839
b = 0.587345
1.09573 8.61160
6
II. I
u
2
= hb, u
2
+ a u + 1, u
5
+ u
4
2u
3
u
2
+ u 1i
(i) Arc colorings
a
8
=
1
0
a
11
=
0
u
a
9
=
1
u
2
a
1
=
u
u
3
+ u
a
4
=
u
2
+ u 1
0
a
2
=
u
2
1
u
3
+ u
a
10
=
u
2
+ 1
u
4
+ 2u
2
a
7
=
1
0
a
3
=
u
2
+ u 1
0
a
6
=
u
3
+ 2u
u
3
u
a
5
=
u
u
3
u
a
5
=
u
u
3
u
(ii) Obstruction class = 1
(iii) Cusp Shapes = 2u
4
3u
3
2u
2
+ 8u 14
7
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
(u 1)
5
c
2
, c
4
(u + 1)
5
c
3
, c
7
u
5
c
5
u
5
3u
4
+ 4u
3
u
2
u + 1
c
6
u
5
u
4
+ 2u
3
u
2
+ u 1
c
8
, c
9
u
5
+ u
4
2u
3
u
2
+ u 1
c
10
u
5
+ u
4
+ 2u
3
+ u
2
+ u + 1
c
11
u
5
u
4
2u
3
+ u
2
+ u + 1
8
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
2
, c
4
(y 1)
5
c
3
, c
7
y
5
c
5
y
5
y
4
+ 8y
3
3y
2
+ 3y 1
c
6
, c
10
y
5
+ 3y
4
+ 4y
3
+ y
2
y 1
c
8
, c
9
, c
11
y
5
5y
4
+ 8y
3
3y
2
y 1
9
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
2
1(vol +
1CS) Cusp shape
u = 1.21774
a = 1.70062
b = 0
4.04602 8.24330
u = 0.309916 + 0.549911I
a = 0.896438 + 0.890762I
b = 0
1.97403 1.53058I 10.50099 + 3.45976I
u = 0.309916 0.549911I
a = 0.896438 0.890762I
b = 0
1.97403 + 1.53058I 10.50099 3.45976I
u = 1.41878 + 0.21917I
a = 0.453870 0.402731I
b = 0
7.51750 + 4.40083I 14.3774 5.8297I
u = 1.41878 0.21917I
a = 0.453870 + 0.402731I
b = 0
7.51750 4.40083I 14.3774 + 5.8297I
10
III. I
u
3
= hb a 1, a
2
+ a 1, u 1i
(i) Arc colorings
a
8
=
1
0
a
11
=
0
1
a
9
=
1
1
a
1
=
1
0
a
4
=
a
a + 1
a
2
=
2
a 2
a
10
=
0
1
a
7
=
0
a 2
a
3
=
a
a 2
a
6
=
0
a 2
a
5
=
a 2
a 2
a
5
=
a 2
a 2
(ii) Obstruction class = 1
(iii) Cusp Shapes = 21
11
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
3
u
2
+ u 1
c
2
u
2
+ 3u + 1
c
4
, c
7
u
2
u 1
c
5
u
2
3u + 1
c
6
, c
10
u
2
c
8
, c
9
(u 1)
2
c
11
(u + 1)
2
12
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
3
, c
4
c
7
y
2
3y + 1
c
2
, c
5
y
2
7y + 1
c
6
, c
10
y
2
c
8
, c
9
, c
11
(y 1)
2
13
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
3
1(vol +
1CS) Cusp shape
u = 1.00000
a = 0.618034
b = 1.61803
10.5276 21.0000
u = 1.00000
a = 1.61803
b = 0.618034
2.63189 21.0000
14
IV. u-Polynomials
Crossings u-Polynomials at each crossing
c
1
((u 1)
5
)(u
2
+ u 1)(u
16
7u
15
+ ··· + 3u + 1)
c
2
((u + 1)
5
)(u
2
+ 3u + 1)(u
16
+ 29u
15
+ ··· + 17u + 1)
c
3
u
5
(u
2
+ u 1)(u
16
+ 2u
15
+ ··· + 72u
2
32)
c
4
((u + 1)
5
)(u
2
u 1)(u
16
7u
15
+ ··· + 3u + 1)
c
5
(u
2
3u + 1)(u
5
3u
4
+ ··· u + 1)(u
16
3u
15
+ ··· + u 1)
c
6
u
2
(u
5
u
4
+ ··· + u 1)(u
16
2u
15
+ ··· 20u 4)
c
7
u
5
(u
2
u 1)(u
16
+ 2u
15
+ ··· + 72u
2
32)
c
8
, c
9
((u 1)
2
)(u
5
+ u
4
+ ··· + u 1)(u
16
4u
15
+ ··· 10u + 1)
c
10
u
2
(u
5
+ u
4
+ ··· + u + 1)(u
16
2u
15
+ ··· 20u 4)
c
11
((u + 1)
2
)(u
5
u
4
+ ··· + u + 1)(u
16
4u
15
+ ··· 10u + 1)
15
V. Riley Polynomials
Crossings Riley Polynomials at each crossing
c
1
, c
4
((y 1)
5
)(y
2
3y + 1)(y
16
29y
15
+ ··· 17y + 1)
c
2
((y 1)
5
)(y
2
7y + 1)(y
16
77y
15
+ ··· 1761y + 1)
c
3
, c
7
y
5
(y
2
3y + 1)(y
16
36y
15
+ ··· 4608y + 1024)
c
5
(y
2
7y + 1)(y
5
y
4
+ ··· + 3y 1)(y
16
37y
15
+ ··· 11y + 1)
c
6
, c
10
y
2
(y
5
+ 3y
4
+ ··· y 1)(y
16
+ 18y
15
+ ··· 168y + 16)
c
8
, c
9
, c
11
((y 1)
2
)(y
5
5y
4
+ ··· y 1)(y
16
20y
15
+ ··· 146y + 1)
16