11n
28
(K11n
28
)
A knot diagram
1
Linearized knot diagam
4 1 8 2 8 10 3 1 11 6 9
Solving Sequence
1,8 4,9
3 2 5 7 11 10 6
c
8
c
3
c
2
c
4
c
7
c
11
c
9
c
6
c
1
, c
5
, c
10
Ideals for irreducible components
2
of X
par
I
u
1
= h−611u
13
377u
12
+ ··· + 3054b + 169, 3787u
13
7405u
12
+ ··· + 3054a 21955,
u
14
+ 2u
13
+ ··· + 7u + 1i
I
u
2
= hb, u
3
+ u
2
+ a 3u + 2, u
4
u
3
+ 3u
2
2u + 1i
* 2 irreducible components of dim
C
= 0, with total 18 representations.
1
The image of knot diagram is generated by the software Draw programme developed by An-
drew Bartholomew(http://www.layer8.co.uk/maths/draw/index.htm#Running-draw), where we modi-
fied some parts for our purpose(https://github.com/CATsTAILs/LinksPainter).
2
All coefficients of polynomials are rational numbers. But the coefficients are sometimes approximated
in decimal forms when there is not enough margin.
1
I. I
u
1
= h−611u
13
377u
12
+ · · · + 3054b + 169, 3787u
13
7405u
12
+ · · · +
3054a 21955, u
14
+ 2u
13
+ · · · + 7u + 1i
(i) Arc colorings
a
1
=
0
u
a
8
=
1
0
a
4
=
1.24001u
13
+ 2.42469u
12
+ ··· + 26.9705u + 7.18893
0.200065u
13
+ 0.123445u
12
+ ··· + 1.85265u 0.0553373
a
9
=
1
u
2
a
3
=
1.03995u
13
+ 2.30124u
12
+ ··· + 25.1179u + 7.24427
0.200065u
13
+ 0.123445u
12
+ ··· + 1.85265u 0.0553373
a
2
=
1.03995u
13
+ 2.30124u
12
+ ··· + 25.1179u + 7.24427
0.399804u
13
+ 0.629666u
12
+ ··· + 4.44204u + 0.166012
a
5
=
0.599869u
13
+ 0.753111u
12
+ ··· + 5.29470u + 0.110675
0.400458u
13
0.864113u
12
+ ··· 4.96857u 0.612639
a
7
=
0.612639u
13
+ 0.824820u
12
+ ··· + 2.56189u 0.680092
0.446627u
13
0.892600u
12
+ ··· 4.08841u 0.599869
a
11
=
u
u
3
+ u
a
10
=
u
2
+ 1
u
4
+ 2u
2
a
6
=
1.00033u
13
+ 1.61722u
12
+ ··· + 10.2633u + 0.723314
0.400458u
13
0.864113u
12
+ ··· 4.96857u 0.612639
a
6
=
1.00033u
13
+ 1.61722u
12
+ ··· + 10.2633u + 0.723314
0.400458u
13
0.864113u
12
+ ··· 4.96857u 0.612639
(ii) Obstruction class = 1
(iii) Cusp Shapes =
1595
509
u
13
+
2457
509
u
12
+ ··· +
11407
509
u
1470
509
2
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
4
u
14
5u
13
+ ··· 3u + 1
c
2
u
14
u
13
+ ··· 5u + 1
c
3
, c
7
u
14
+ u
13
+ ··· + 72u + 16
c
5
u
14
2u
13
+ ··· + 540u + 200
c
6
, c
10
u
14
2u
13
+ ··· u + 1
c
8
, c
9
, c
11
u
14
+ 2u
13
+ ··· + 7u + 1
3
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
4
y
14
+ y
13
+ ··· + 5y + 1
c
2
y
14
+ 37y
13
+ ··· + 73y + 1
c
3
, c
7
y
14
27y
13
+ ··· 832y + 256
c
5
y
14
+ 82y
13
+ ··· + 531600y + 40000
c
6
, c
10
y
14
+ 2y
13
+ ··· + 7y + 1
c
8
, c
9
, c
11
y
14
+ 22y
13
+ ··· + 7y + 1
4
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.571781 + 0.561972I
a = 0.501422 + 0.063559I
b = 0.607051 + 0.239027I
0.35154 + 1.84409I 0.79789 4.83996I
u = 0.571781 0.561972I
a = 0.501422 0.063559I
b = 0.607051 0.239027I
0.35154 1.84409I 0.79789 + 4.83996I
u = 0.191932 + 1.332820I
a = 0.818040 0.252861I
b = 1.48559 + 0.47442I
7.00688 + 0.55948I 2.27714 0.75874I
u = 0.191932 1.332820I
a = 0.818040 + 0.252861I
b = 1.48559 0.47442I
7.00688 0.55948I 2.27714 + 0.75874I
u = 0.004664 + 0.621250I
a = 0.877799 + 0.498919I
b = 0.331213 + 0.818885I
0.65784 + 1.53044I 1.45925 4.48215I
u = 0.004664 0.621250I
a = 0.877799 0.498919I
b = 0.331213 0.818885I
0.65784 1.53044I 1.45925 + 4.48215I
u = 0.38042 + 1.43966I
a = 0.689794 0.282260I
b = 1.401110 + 0.139917I
6.27413 + 5.41755I 1.11952 5.07443I
u = 0.38042 1.43966I
a = 0.689794 + 0.282260I
b = 1.401110 0.139917I
6.27413 5.41755I 1.11952 + 5.07443I
u = 0.206958 + 0.197769I
a = 2.96034 + 2.05739I
b = 0.386385 + 0.432449I
1.89748 + 0.70166I 5.60702 + 2.76477I
u = 0.206958 0.197769I
a = 2.96034 2.05739I
b = 0.386385 0.432449I
1.89748 0.70166I 5.60702 2.76477I
5
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.07913 + 1.85059I
a = 0.707024 0.611419I
b = 2.31698 0.44656I
18.9281 1.0022I 1.174737 0.209171I
u = 0.07913 1.85059I
a = 0.707024 + 0.611419I
b = 2.31698 + 0.44656I
18.9281 + 1.0022I 1.174737 + 0.209171I
u = 0.10723 + 1.88534I
a = 0.671987 0.615446I
b = 2.23924 0.56690I
18.7301 + 8.0616I 0.87427 4.09385I
u = 0.10723 1.88534I
a = 0.671987 + 0.615446I
b = 2.23924 + 0.56690I
18.7301 8.0616I 0.87427 + 4.09385I
6
II. I
u
2
= hb, u
3
+ u
2
+ a 3u + 2, u
4
u
3
+ 3u
2
2u + 1i
(i) Arc colorings
a
1
=
0
u
a
8
=
1
0
a
4
=
u
3
u
2
+ 3u 2
0
a
9
=
1
u
2
a
3
=
u
3
u
2
+ 3u 2
0
a
2
=
u
3
u
2
+ 3u 2
u
a
5
=
0
u
a
7
=
1
0
a
11
=
u
u
3
+ u
a
10
=
u
2
+ 1
u
3
u
2
+ 2u 1
a
6
=
u
u
a
6
=
u
u
(ii) Obstruction class = 1
(iii) Cusp Shapes = 6u
3
6u
2
+ 17u 11
7
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
(u 1)
4
c
2
, c
4
(u + 1)
4
c
3
, c
7
u
4
c
5
, c
8
, c
9
u
4
u
3
+ 3u
2
2u + 1
c
6
u
4
u
3
+ u
2
+ 1
c
10
u
4
+ u
3
+ u
2
+ 1
c
11
u
4
+ u
3
+ 3u
2
+ 2u + 1
8
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
2
, c
4
(y 1)
4
c
3
, c
7
y
4
c
5
, c
8
, c
9
c
11
y
4
+ 5y
3
+ 7y
2
+ 2y + 1
c
6
, c
10
y
4
+ y
3
+ 3y
2
+ 2y + 1
9
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
2
1(vol +
1CS) Cusp shape
u = 0.395123 + 0.506844I
a = 0.95668 + 1.22719I
b = 0
1.85594 1.41510I 5.13523 + 6.85627I
u = 0.395123 0.506844I
a = 0.95668 1.22719I
b = 0
1.85594 + 1.41510I 5.13523 6.85627I
u = 0.10488 + 1.55249I
a = 0.043315 + 0.641200I
b = 0
5.14581 3.16396I 0.63523 + 2.29471I
u = 0.10488 1.55249I
a = 0.043315 0.641200I
b = 0
5.14581 + 3.16396I 0.63523 2.29471I
10
III. u-Polynomials
Crossings u-Polynomials at each crossing
c
1
((u 1)
4
)(u
14
5u
13
+ ··· 3u + 1)
c
2
((u + 1)
4
)(u
14
u
13
+ ··· 5u + 1)
c
3
, c
7
u
4
(u
14
+ u
13
+ ··· + 72u + 16)
c
4
((u + 1)
4
)(u
14
5u
13
+ ··· 3u + 1)
c
5
(u
4
u
3
+ 3u
2
2u + 1)(u
14
2u
13
+ ··· + 540u + 200)
c
6
(u
4
u
3
+ u
2
+ 1)(u
14
2u
13
+ ··· u + 1)
c
8
, c
9
(u
4
u
3
+ 3u
2
2u + 1)(u
14
+ 2u
13
+ ··· + 7u + 1)
c
10
(u
4
+ u
3
+ u
2
+ 1)(u
14
2u
13
+ ··· u + 1)
c
11
(u
4
+ u
3
+ 3u
2
+ 2u + 1)(u
14
+ 2u
13
+ ··· + 7u + 1)
11
IV. Riley Polynomials
Crossings Riley Polynomials at each crossing
c
1
, c
4
((y 1)
4
)(y
14
+ y
13
+ ··· + 5y + 1)
c
2
((y 1)
4
)(y
14
+ 37y
13
+ ··· + 73y + 1)
c
3
, c
7
y
4
(y
14
27y
13
+ ··· 832y + 256)
c
5
(y
4
+ 5y
3
+ 7y
2
+ 2y + 1)(y
14
+ 82y
13
+ ··· + 531600y + 40000)
c
6
, c
10
(y
4
+ y
3
+ 3y
2
+ 2y + 1)(y
14
+ 2y
13
+ ··· + 7y + 1)
c
8
, c
9
, c
11
(y
4
+ 5y
3
+ 7y
2
+ 2y + 1)(y
14
+ 22y
13
+ ··· + 7y + 1)
12