11n
39
(K11n
39
)
A knot diagram
1
Linearized knot diagam
4 1 8 2 10 9 3 11 1 8 6
Solving Sequence
9,11 3,8
4 7 6 1 2 5 10
c
8
c
3
c
7
c
6
c
11
c
2
c
4
c
10
c
1
, c
5
, c
9
Ideals for irreducible components
2
of X
par
I
u
1
= hu
9
+ 4u
8
+ 5u
7
2u
6
9u
5
4u
4
+ 2u
3
+ b u, u
9
4u
8
6u
7
+ 9u
5
+ 8u
4
2u
3
4u
2
+ a + u + 2,
u
12
+ 5u
11
+ 9u
10
21u
8
22u
7
+ 10u
6
+ 26u
5
+ 4u
4
11u
3
3u
2
+ 2u + 1i
I
u
2
= hu
4
+ u
3
u
2
+ b 2u 1, u
5
2u
4
+ 2u
2
+ a + u, u
6
+ u
5
u
4
2u
3
+ u + 1i
I
u
3
= h10a
5
46a
4
+ 69a
3
+ 18a
2
+ 13b 18a 12, a
6
5a
5
+ 9a
4
2a
3
2a
2
a + 1, u 1i
I
u
4
= hu
11
+ 3u
10
+ 11u
9
+ 10u
8
+ 19u
7
16u
6
+ 8u
5
48u
4
+ 50u
3
15u
2
+ 16b + 63u 6,
7u
11
22u
10
58u
9
55u
8
65u
7
+ 41u
6
+ 6u
5
+ 108u
4
134u
3
73u
2
+ 32a 174u 79,
u
12
+ 3u
11
+ 8u
10
+ 7u
9
+ 8u
8
8u
7
u
6
14u
5
+ 22u
4
+ 9u
3
+ 25u
2
+ 3u + 1i
* 4 irreducible components of dim
C
= 0, with total 36 representations.
1
The image of knot diagram is generated by the software Draw programme developed by An-
drew Bartholomew(http://www.layer8.co.uk/maths/draw/index.htm#Running-draw), where we modi-
fied some parts for our purpose(https://github.com/CATsTAILs/LinksPainter).
2
All coefficients of polynomials are rational numbers. But the coefficients are sometimes approximated
in decimal forms when there is not enough margin.
1
I.
I
u
1
= hu
9
+ 4u
8
+ · · · +b u, u
9
4u
8
+ · · · +a + 2, u
12
+ 5u
11
+ · · · +2u + 1i
(i) Arc colorings
a
9
=
1
0
a
11
=
0
u
a
3
=
u
9
+ 4u
8
+ 6u
7
9u
5
8u
4
+ 2u
3
+ 4u
2
u 2
u
9
4u
8
5u
7
+ 2u
6
+ 9u
5
+ 4u
4
2u
3
+ u
a
8
=
1
u
2
a
4
=
u
11
+ 4u
10
+ 6u
9
8u
7
6u
6
+ 2u
5
u
3
+ 2u
2
2
u
11
5u
10
8u
9
+ u
8
+ 16u
7
+ 10u
6
10u
5
9u
4
+ 5u
3
+ 5u
2
1
a
7
=
u
3
2u
2
+ 2
u
5
+ 2u
4
+ u
3
2u
2
u
a
6
=
u
5
+ 2u
4
4u
2
u + 2
u
5
+ 2u
4
+ u
3
2u
2
u
a
1
=
u
11
+ 4u
10
+ 4u
9
8u
8
18u
7
+ 24u
5
+ 8u
4
15u
3
4u
2
+ 4u
u
11
+ 4u
10
+ 5u
9
4u
8
14u
7
6u
6
+ 11u
5
+ 8u
4
3u
3
2u
2
+ u
a
2
=
u
10
+ 4u
9
+ 5u
8
2u
7
8u
6
2u
5
+ 3u
4
2u
3
u
2
1
u
11
+ 5u
10
+ ··· + 2u + 1
a
5
=
u
9
+ 2u
8
4u
6
u
5
+ 2u
4
+ 2u
2
+ u 2
u
11
2u
10
+ u
9
+ 6u
8
8u
6
u
5
+ 4u
4
u
3
+ u
a
10
=
u
u
3
+ u
a
10
=
u
u
3
+ u
(ii) Obstruction class = 1
(iii) Cusp Shapes = 4u
11
16u
10
24u
9
+ 24u
7
32u
5
+ 16u
4
+ 36u
3
16u + 2
2
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
4
, c
8
c
10
u
12
5u
11
+ ··· 2u + 1
c
2
u
12
+ 7u
11
+ ··· + 10u + 1
c
3
, c
7
, c
9
u
12
+ u
11
+ ··· + 2u + 1
c
5
u
12
u
11
+ ··· + 44u + 23
c
6
u
12
3u
11
+ ··· 14u + 4
c
11
u
12
+ u
11
+ u
10
+ 5u
8
4u
6
8u
5
+ 6u
4
+ 3u
3
+ 3u
2
+ 1
3
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
4
, c
8
c
10
y
12
7y
11
+ ··· 10y + 1
c
2
y
12
+ 29y
11
+ ··· + 22y + 1
c
3
, c
7
, c
9
y
12
15y
11
+ ··· 2y + 1
c
5
y
12
23y
11
+ ··· 4098y + 529
c
6
y
12
+ 5y
11
+ ··· + 68y + 16
c
11
y
12
+ y
11
+ ··· + 6y + 1
4
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 1.017000 + 0.101771I
a = 4.30103 + 2.01922I
b = 5.15079 0.85342I
3.52730 0.57280I 2.7091 26.6989I
u = 1.017000 0.101771I
a = 4.30103 2.01922I
b = 5.15079 + 0.85342I
3.52730 + 0.57280I 2.7091 + 26.6989I
u = 0.997809 + 0.382742I
a = 0.095986 + 0.498664I
b = 0.336025 + 0.091002I
1.70690 + 6.65526I 0.69156 12.28500I
u = 0.997809 0.382742I
a = 0.095986 0.498664I
b = 0.336025 0.091002I
1.70690 6.65526I 0.69156 + 12.28500I
u = 0.568808 + 0.252332I
a = 1.155830 0.548735I
b = 0.126143 + 1.177030I
1.61529 1.35793I 3.64822 + 4.51645I
u = 0.568808 0.252332I
a = 1.155830 + 0.548735I
b = 0.126143 1.177030I
1.61529 + 1.35793I 3.64822 4.51645I
u = 0.417930 + 0.278210I
a = 1.043110 0.681779I
b = 0.414535 0.062132I
1.46216 0.16286I 7.96188 1.03516I
u = 0.417930 0.278210I
a = 1.043110 + 0.681779I
b = 0.414535 + 0.062132I
1.46216 + 0.16286I 7.96188 + 1.03516I
u = 1.29679 + 1.06566I
a = 0.784134 0.966249I
b = 0.21322 + 1.93092I
12.72390 + 5.46645I 0.22295 2.11548I
u = 1.29679 1.06566I
a = 0.784134 + 0.966249I
b = 0.21322 1.93092I
12.72390 5.46645I 0.22295 + 2.11548I
5
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 1.37328 + 1.07803I
a = 0.880154 + 0.892257I
b = 0.08836 2.35166I
12.4026 + 12.7511I 0.69002 5.94531I
u = 1.37328 1.07803I
a = 0.880154 0.892257I
b = 0.08836 + 2.35166I
12.4026 12.7511I 0.69002 + 5.94531I
6
II.
I
u
2
= hu
4
+u
3
u
2
+b2u1, u
5
2u
4
+2u
2
+a+u, u
6
+u
5
u
4
2u
3
+u+1i
(i) Arc colorings
a
9
=
1
0
a
11
=
0
u
a
3
=
u
5
+ 2u
4
2u
2
u
u
4
u
3
+ u
2
+ 2u + 1
a
8
=
1
u
2
a
4
=
u
5
+ 2u
4
2u
2
u
u
4
u
3
+ u
2
+ 2u + 1
a
7
=
1
u
2
a
6
=
u
2
+ 1
u
2
a
1
=
u
5
2u
3
+ u
u
5
u
3
+ u
a
2
=
2u
5
+ 2u
4
2u
3
2u
2
u
5
u
4
2u
3
+ u
2
+ 3u + 1
a
5
=
u
5
+ 2u
3
u
u
5
+ u
3
u
a
10
=
u
u
3
+ u
a
10
=
u
u
3
+ u
(ii) Obstruction class = 1
(iii) Cusp Shapes = 3u
5
+ 7u
4
+ u
3
6u
2
5u 1
7
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
(u 1)
6
c
2
, c
4
(u + 1)
6
c
3
, c
7
u
6
c
5
, c
9
, c
10
u
6
u
5
u
4
+ 2u
3
u + 1
c
6
, c
11
u
6
3u
5
+ 5u
4
4u
3
+ 2u
2
u + 1
c
8
u
6
+ u
5
u
4
2u
3
+ u + 1
8
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
2
, c
4
(y 1)
6
c
3
, c
7
y
6
c
5
, c
8
, c
9
c
10
y
6
3y
5
+ 5y
4
4y
3
+ 2y
2
y + 1
c
6
, c
11
y
6
+ y
5
+ 5y
4
+ 6y
2
+ 3y + 1
9
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
2
1(vol +
1CS) Cusp shape
u = 1.002190 + 0.295542I
a = 1.68613 + 1.92635I
b = 2.68739 0.76772I
3.53554 0.92430I 6.82874 + 7.13914I
u = 1.002190 0.295542I
a = 1.68613 1.92635I
b = 2.68739 + 0.76772I
3.53554 + 0.92430I 6.82874 7.13914I
u = 0.428243 + 0.664531I
a = 0.344968 + 0.764807I
b = 0.346225 + 0.393823I
0.245672 0.924305I 1.12292 + 1.33143I
u = 0.428243 0.664531I
a = 0.344968 0.764807I
b = 0.346225 0.393823I
0.245672 + 0.924305I 1.12292 1.33143I
u = 1.073950 + 0.558752I
a = 0.158836 0.437639I
b = 0.658836 + 0.177500I
1.64493 + 5.69302I 0.29418 2.69056I
u = 1.073950 0.558752I
a = 0.158836 + 0.437639I
b = 0.658836 0.177500I
1.64493 5.69302I 0.29418 + 2.69056I
10
III.
I
u
3
= h10a
5
+ 13b + · · · 18a 12, a
6
5a
5
+ 9a
4
2a
3
2a
2
a + 1, u 1i
(i) Arc colorings
a
9
=
1
0
a
11
=
0
1
a
3
=
a
0.769231a
5
+ 3.53846a
4
+ ··· + 1.38462a + 0.923077
a
8
=
1
1
a
4
=
0.769231a
5
+ 3.53846a
4
+ ··· + 3.38462a + 0.923077
a
a
7
=
0.307692a
5
+ 1.61538a
4
+ ··· + 0.153846a + 1.76923
0.846154a
5
+ 3.69231a
4
+ ··· 0.0769231a + 0.615385
a
6
=
1.15385a
5
+ 5.30769a
4
+ ··· + 0.0769231a + 2.38462
0.846154a
5
+ 3.69231a
4
+ ··· 0.0769231a + 0.615385
a
1
=
2.30769a
5
+ 10.6154a
4
+ ··· + 1.15385a + 2.76923
0
a
2
=
0.0769231a
5
0.153846a
4
+ ··· 2.53846a + 0.307692
0.769231a
5
+ 3.53846a
4
+ ··· + 1.38462a + 0.923077
a
5
=
0.307692a
5
+ 1.61538a
4
+ ··· + 0.153846a + 1.76923
0.846154a
5
+ 3.69231a
4
+ ··· 0.0769231a + 0.615385
a
10
=
1
0
a
10
=
1
0
(ii) Obstruction class = 1
(iii) Cusp Shapes =
33
13
a
5
144
13
a
4
+
216
13
a
3
+
10
13
a
2
+
16
13
a
37
13
11
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
7
u
6
+ u
5
u
4
2u
3
+ u + 1
c
2
, c
11
u
6
+ 3u
5
+ 5u
4
+ 4u
3
+ 2u
2
+ u + 1
c
3
, c
4
u
6
u
5
u
4
+ 2u
3
u + 1
c
5
, c
6
u
6
u
5
+ 2u
4
4u
3
+ 5u
2
3u + 1
c
8
(u 1)
6
c
9
u
6
c
10
(u + 1)
6
12
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
3
, c
4
c
7
y
6
3y
5
+ 5y
4
4y
3
+ 2y
2
y + 1
c
2
, c
11
y
6
+ y
5
+ 5y
4
+ 6y
2
+ 3y + 1
c
5
, c
6
y
6
+ 3y
5
+ 6y
4
+ 5y
2
+ y + 1
c
8
, c
10
(y 1)
6
c
9
y
6
13
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
3
1(vol +
1CS) Cusp shape
u = 1.00000
a = 0.655968 + 0.098281I
b = 0.346225 0.393823I
0.245672 0.924305I 1.12292 + 1.33143I
u = 1.00000
a = 0.655968 0.098281I
b = 0.346225 + 0.393823I
0.245672 + 0.924305I 1.12292 1.33143I
u = 1.00000
a = 0.415113 + 0.381252I
b = 0.658836 + 0.177500I
1.64493 5.69302I 0.29418 + 2.69056I
u = 1.00000
a = 0.415113 0.381252I
b = 0.658836 0.177500I
1.64493 + 5.69302I 0.29418 2.69056I
u = 1.00000
a = 2.25915 + 1.43225I
b = 2.68739 0.76772I
3.53554 + 0.92430I 6.82874 7.13914I
u = 1.00000
a = 2.25915 1.43225I
b = 2.68739 + 0.76772I
3.53554 0.92430I 6.82874 + 7.13914I
14
IV. I
u
4
=
hu
11
+3u
10
+· · ·+16b6, 7u
11
22u
10
+· · ·+32a79, u
12
+3u
11
+· · ·+3u+1i
(i) Arc colorings
a
9
=
1
0
a
11
=
0
u
a
3
=
0.218750u
11
+ 0.687500u
10
+ ··· + 5.43750u + 2.46875
0.0625000u
11
0.187500u
10
+ ··· 3.93750u + 0.375000
a
8
=
1
u
2
a
4
=
1
8
u
11
+
7
16
u
10
+ ··· +
19
16
u +
45
16
0.0937500u
11
0.187500u
10
+ ··· 3.93750u + 0.406250
a
7
=
0.250000u
11
0.562500u
10
+ ··· 6.56250u + 2.68750
11
32
u
11
u
10
+ ··· 5u
25
32
a
6
=
0.593750u
11
1.56250u
10
+ ··· 11.5625u + 1.90625
11
32
u
11
u
10
+ ··· 5u
25
32
a
1
=
0.218750u
11
+ 0.687500u
10
+ ··· + 5.43750u + 2.46875
1
4
u
9
1
2
u
8
+ ···
3
2
u +
1
4
a
2
=
0.0312500u
11
+ 0.250000u
10
+ ··· + 0.750000u + 5.15625
0.125000u
11
0.437500u
10
+ ··· 6.68750u + 0.437500
a
5
=
0.875000u
11
+ 2.31250u
10
+ ··· + 12.3125u 1.56250
27
32
u
11
+
7
4
u
10
+ ··· +
23
4
u +
33
32
a
10
=
u
u
3
+ u
a
10
=
u
u
3
+ u
(ii) Obstruction class = 1
(iii) Cusp Shapes
=
3
16
u
11
11
16
u
10
33
16
u
9
3u
8
55
16
u
7
+
1
2
u
6
+
11
4
u
5
+
21
4
u
4
21
8
u
3
83
16
u
2
183
16
u
23
8
15
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
4
, c
8
c
10
u
12
3u
11
+ ··· 3u + 1
c
2
u
12
7u
11
+ ··· 41u + 1
c
3
, c
7
, c
9
u
12
+ u
11
+ ··· + 320u + 64
c
5
u
12
14u
10
+ ··· + 120u + 77
c
6
u
12
2u
11
+ ··· + 144u + 121
c
11
(u
6
+ u
5
+ u
4
+ 2u
2
+ u + 1)
2
16
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
4
, c
8
c
10
y
12
+ 7y
11
+ ··· + 41y + 1
c
2
y
12
+ 27y
11
+ ··· 451y + 1
c
3
, c
7
, c
9
y
12
27y
11
+ ··· 12288y + 4096
c
5
y
12
28y
11
+ ··· + 53360y + 5929
c
6
y
12
+ 24y
11
+ ··· + 28148y + 14641
c
11
(y
6
+ y
5
+ 5y
4
+ 4y
3
+ 6y
2
+ 3y + 1)
2
17
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
4
1(vol +
1CS) Cusp shape
u = 0.282006 + 0.991713I
a = 1.119650 0.174269I
b = 0.287706 0.831147I
2.99789 + 2.65597I 1.54637 3.55162I
u = 0.282006 0.991713I
a = 1.119650 + 0.174269I
b = 0.287706 + 0.831147I
2.99789 2.65597I 1.54637 + 3.55162I
u = 1.032840 + 0.430283I
a = 0.388751 0.185708I
b = 0.552079 + 0.783280I
1.90302 1.10871I 2.03402 + 2.13465I
u = 1.032840 0.430283I
a = 0.388751 + 0.185708I
b = 0.552079 0.783280I
1.90302 + 1.10871I 2.03402 2.13465I
u = 0.042043 + 1.323160I
a = 0.872012 + 0.135725I
b = 0.287706 + 0.831147I
2.99789 2.65597I 1.54637 + 3.55162I
u = 0.042043 1.323160I
a = 0.872012 0.135725I
b = 0.287706 0.831147I
2.99789 + 2.65597I 1.54637 3.55162I
u = 1.07187 + 1.35065I
a = 0.819272 0.623911I
b = 0.26437 + 2.03792I
13.70950 + 3.42721I 0.48765 2.36550I
u = 1.07187 1.35065I
a = 0.819272 + 0.623911I
b = 0.26437 2.03792I
13.70950 3.42721I 0.48765 + 2.36550I
u = 0.058341 + 0.199318I
a = 2.09440 + 1.00050I
b = 0.552079 0.783280I
1.90302 + 1.10871I 2.03402 2.13465I
u = 0.058341 0.199318I
a = 2.09440 1.00050I
b = 0.552079 + 0.783280I
1.90302 1.10871I 2.03402 + 2.13465I
18
Solutions to I
u
4
1(vol +
1CS) Cusp shape
u = 1.07857 + 1.47659I
a = 0.772555 + 0.588334I
b = 0.26437 2.03792I
13.70950 3.42721I 0.48765 + 2.36550I
u = 1.07857 1.47659I
a = 0.772555 0.588334I
b = 0.26437 + 2.03792I
13.70950 + 3.42721I 0.48765 2.36550I
19
V. u-Polynomials
Crossings u-Polynomials at each crossing
c
1
, c
8
((u 1)
6
)(u
6
+ u
5
+ ··· + u + 1)(u
12
5u
11
+ ··· 2u + 1)
· (u
12
3u
11
+ ··· 3u + 1)
c
2
(u + 1)
6
(u
6
+ 3u
5
+ 5u
4
+ 4u
3
+ 2u
2
+ u + 1)
· (u
12
7u
11
+ ··· 41u + 1)(u
12
+ 7u
11
+ ··· + 10u + 1)
c
3
, c
9
u
6
(u
6
u
5
+ ··· u + 1)(u
12
+ u
11
+ ··· + 320u + 64)
· (u
12
+ u
11
+ ··· + 2u + 1)
c
4
, c
10
((u + 1)
6
)(u
6
u
5
+ ··· u + 1)(u
12
5u
11
+ ··· 2u + 1)
· (u
12
3u
11
+ ··· 3u + 1)
c
5
(u
6
u
5
u
4
+ 2u
3
u + 1)(u
6
u
5
+ 2u
4
4u
3
+ 5u
2
3u + 1)
· (u
12
14u
10
+ ··· + 120u + 77)(u
12
u
11
+ ··· + 44u + 23)
c
6
(u
6
3u
5
+ 5u
4
4u
3
+ 2u
2
u + 1)(u
6
u
5
+ 2u
4
4u
3
+ 5u
2
3u + 1)
· (u
12
3u
11
+ ··· 14u + 4)(u
12
2u
11
+ ··· + 144u + 121)
c
7
u
6
(u
6
+ u
5
+ ··· + u + 1)(u
12
+ u
11
+ ··· + 320u + 64)
· (u
12
+ u
11
+ ··· + 2u + 1)
c
11
(u
6
3u
5
+ 5u
4
4u
3
+ 2u
2
u + 1)(u
6
+ u
5
+ u
4
+ 2u
2
+ u + 1)
2
· (u
6
+ 3u
5
+ 5u
4
+ 4u
3
+ 2u
2
+ u + 1)
· (u
12
+ u
11
+ u
10
+ 5u
8
4u
6
8u
5
+ 6u
4
+ 3u
3
+ 3u
2
+ 1)
20
VI. Riley Polynomials
Crossings Riley Polynomials at each crossing
c
1
, c
4
, c
8
c
10
(y 1)
6
(y
6
3y
5
+ 5y
4
4y
3
+ 2y
2
y + 1)
· (y
12
7y
11
+ ··· 10y + 1)(y
12
+ 7y
11
+ ··· + 41y + 1)
c
2
((y 1)
6
)(y
6
+ y
5
+ ··· + 3y + 1)(y
12
+ 27y
11
+ ··· 451y + 1)
· (y
12
+ 29y
11
+ ··· + 22y + 1)
c
3
, c
7
, c
9
y
6
(y
6
3y
5
+ 5y
4
4y
3
+ 2y
2
y + 1)
· (y
12
27y
11
+ ··· 12288y + 4096)(y
12
15y
11
+ ··· 2y + 1)
c
5
(y
6
3y
5
+ 5y
4
4y
3
+ 2y
2
y + 1)(y
6
+ 3y
5
+ 6y
4
+ 5y
2
+ y + 1)
· (y
12
28y
11
+ ··· + 53360y + 5929)
· (y
12
23y
11
+ ··· 4098y + 529)
c
6
(y
6
+ y
5
+ 5y
4
+ 6y
2
+ 3y + 1)(y
6
+ 3y
5
+ 6y
4
+ 5y
2
+ y + 1)
· (y
12
+ 5y
11
+ ··· + 68y + 16)(y
12
+ 24y
11
+ ··· + 28148y + 14641)
c
11
(y
6
+ y
5
+ 5y
4
+ 6y
2
+ 3y + 1)
2
(y
6
+ y
5
+ 5y
4
+ 4y
3
+ 6y
2
+ 3y + 1)
2
· (y
12
+ y
11
+ ··· + 6y + 1)
21