11n
47
(K11n
47
)
A knot diagram
1
Linearized knot diagam
4 1 7 2 11 10 4 6 1 8 9
Solving Sequence
1,4
2
5,9
10 11 6 7 3 8
c
1
c
4
c
9
c
11
c
5
c
6
c
3
c
8
c
2
, c
7
, c
10
Ideals for irreducible components
2
of X
par
I
u
1
= h7.57271 × 10
25
u
34
+ 6.48827 × 10
26
u
33
+ ··· + 7.97336 × 10
26
b 7.26255 × 10
26
,
1.64269 × 10
25
u
34
1.05850 × 10
26
u
33
+ ··· + 2.49168 × 10
25
a 1.38382 × 10
26
, u
35
+ 8u
34
+ ··· + 9u + 1i
I
u
2
= hb
6
b
5
b
4
+ 2b
3
b + 1, a 1, u 1i
I
u
3
= hb + 1, 2u
2
+ a + 4u + 4, u
3
+ u
2
1i
* 3 irreducible components of dim
C
= 0, with total 44 representations.
1
The image of knot diagram is generated by the software Draw programme developed by An-
drew Bartholomew(http://www.layer8.co.uk/maths/draw/index.htm#Running-draw), where we modi-
fied some parts for our purpose(https://github.com/CATsTAILs/LinksPainter).
2
All coefficients of polynomials are rational numbers. But the coefficients are sometimes approximated
in decimal forms when there is not enough margin.
1
I.
I
u
1
= h7.57×10
25
u
34
+6.49×10
26
u
33
+· · ·+7.97×10
26
b7.26×10
26
, 1.64×
10
25
u
34
1.06×10
26
u
33
+· · ·+2.49×10
25
a1.38×10
26
, u
35
+8u
34
+· · ·+9u+1i
(i) Arc colorings
a
1
=
1
0
a
4
=
0
u
a
2
=
1
u
2
a
5
=
u
u
3
+ u
a
9
=
0.659269u
34
+ 4.24813u
33
+ ··· + 120.228u + 5.55377
0.0949751u
34
0.813743u
33
+ ··· + 1.09979u + 0.910851
a
10
=
0.754244u
34
+ 5.06188u
33
+ ··· + 119.128u + 4.64292
0.0949751u
34
0.813743u
33
+ ··· + 1.09979u + 0.910851
a
11
=
0.894280u
34
6.14049u
33
+ ··· 123.987u 2.97552
0.0130827u
34
0.0126909u
33
+ ··· 5.06131u 1.20991
a
6
=
1.77774u
34
+ 17.8440u
33
+ ··· + 23.8681u 10.0326
0.414794u
34
1.96166u
33
+ ··· + 6.00083u + 0.386377
a
7
=
0.135945u
34
+ 1.32830u
33
+ ··· + 28.8699u 0.0316372
0.201606u
34
+ 1.17050u
33
+ ··· + 2.73205u + 0.337551
a
3
=
u
2
+ 1
u
2
a
8
=
0.135945u
34
+ 1.32830u
33
+ ··· + 28.8699u 0.0316372
0.239495u
34
1.52839u
33
+ ··· + 0.429444u + 0.0968115
a
8
=
0.135945u
34
+ 1.32830u
33
+ ··· + 28.8699u 0.0316372
0.239495u
34
1.52839u
33
+ ··· + 0.429444u + 0.0968115
(ii) Obstruction class = 1
(iii) Cusp Shapes
=
3378359165600571190629683677
398668191729252960111215152
u
34
15526399702733176499705931937
199334095864626480055607576
u
33
+ ··· +
65474135371669423713349877783
398668191729252960111215152
u +
2429897091838954454446349621
199334095864626480055607576
2
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
4
u
35
8u
34
+ ··· + 9u 1
c
2
u
35
+ 42u
34
+ ··· 129u + 1
c
3
, c
7
u
35
+ 2u
34
+ ··· 320u 64
c
5
u
35
8u
34
+ ··· + 73u + 31
c
6
u
35
4u
34
+ ··· + 1417u + 1219
c
8
u
35
+ 3u
34
+ ··· + 2u + 1
c
9
, c
11
u
35
5u
34
+ ··· + 67u 1
c
10
u
35
+ 6u
34
+ ··· + 124u 8
3
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
4
y
35
42y
34
+ ··· 129y 1
c
2
y
35
90y
34
+ ··· + 6323y 1
c
3
, c
7
y
35
36y
34
+ ··· 20480y 4096
c
5
y
35
52y
34
+ ··· + 29509y 961
c
6
y
35
4y
34
+ ··· + 25178641y 1485961
c
8
y
35
+ y
34
+ ··· + 14y 1
c
9
, c
11
y
35
33y
34
+ ··· + 5091y 1
c
10
y
35
+ 18y
34
+ ··· + 7312y 64
4
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.964380 + 0.326022I
a = 0.35491 1.77356I
b = 1.401850 + 0.174541I
4.47629 0.99972I 15.2464 + 0.4133I
u = 0.964380 0.326022I
a = 0.35491 + 1.77356I
b = 1.401850 0.174541I
4.47629 + 0.99972I 15.2464 0.4133I
u = 0.679243 + 0.583622I
a = 0.155632 1.137360I
b = 0.397949 + 0.909235I
1.63296 3.48211I 7.94104 + 7.54592I
u = 0.679243 0.583622I
a = 0.155632 + 1.137360I
b = 0.397949 0.909235I
1.63296 + 3.48211I 7.94104 7.54592I
u = 0.990139 + 0.655507I
a = 0.886995 0.313990I
b = 0.934664 0.185167I
1.54213 + 2.47872I 0. + 5.93000I
u = 0.990139 0.655507I
a = 0.886995 + 0.313990I
b = 0.934664 + 0.185167I
1.54213 2.47872I 0. 5.93000I
u = 1.204600 + 0.063415I
a = 0.412107 0.706810I
b = 0.628022 0.554154I
3.08874 + 1.42303I 6.41632 5.79805I
u = 1.204600 0.063415I
a = 0.412107 + 0.706810I
b = 0.628022 + 0.554154I
3.08874 1.42303I 6.41632 + 5.79805I
u = 0.779230
a = 1.08295
b = 0.0140385
1.12597 9.35810
u = 0.605532 + 0.380104I
a = 1.67784 0.73020I
b = 0.361624 0.080090I
1.46738 0.11420I 8.20214 + 0.34884I
5
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.605532 0.380104I
a = 1.67784 + 0.73020I
b = 0.361624 + 0.080090I
1.46738 + 0.11420I 8.20214 0.34884I
u = 0.704998
a = 11.0900
b = 1.00991
2.72892 194.390
u = 0.686181 + 0.154265I
a = 1.246620 0.427424I
b = 1.126280 0.497250I
1.08296 5.42643I 0.21975 + 3.30530I
u = 0.686181 0.154265I
a = 1.246620 + 0.427424I
b = 1.126280 + 0.497250I
1.08296 + 5.42643I 0.21975 3.30530I
u = 0.730316 + 1.119100I
a = 0.576099 + 0.700870I
b = 1.51689 0.33803I
7.84770 8.00129I 0
u = 0.730316 1.119100I
a = 0.576099 0.700870I
b = 1.51689 + 0.33803I
7.84770 + 8.00129I 0
u = 0.656190 + 1.188230I
a = 0.419118 + 0.434391I
b = 1.47252 + 0.05220I
7.58070 + 0.56154I 0
u = 0.656190 1.188230I
a = 0.419118 0.434391I
b = 1.47252 0.05220I
7.58070 0.56154I 0
u = 1.63022 + 0.11868I
a = 0.069536 + 0.327596I
b = 0.340175 0.686101I
9.25057 + 1.88240I 0
u = 1.63022 0.11868I
a = 0.069536 0.327596I
b = 0.340175 + 0.686101I
9.25057 1.88240I 0
6
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.294421 + 0.137620I
a = 0.647696 1.089550I
b = 0.225869 0.594231I
1.40601 + 1.20005I 2.74470 1.99044I
u = 0.294421 0.137620I
a = 0.647696 + 1.089550I
b = 0.225869 + 0.594231I
1.40601 1.20005I 2.74470 + 1.99044I
u = 1.68600
a = 2.34569
b = 1.28757
11.4779 0
u = 1.68299 + 0.18586I
a = 0.383087 0.343481I
b = 0.25892 1.52764I
9.90660 + 6.51942I 0
u = 1.68299 0.18586I
a = 0.383087 + 0.343481I
b = 0.25892 + 1.52764I
9.90660 6.51942I 0
u = 1.70107 + 0.39786I
a = 1.50913 0.63392I
b = 1.58042 + 0.58476I
15.7071 + 13.7623I 0
u = 1.70107 0.39786I
a = 1.50913 + 0.63392I
b = 1.58042 0.58476I
15.7071 13.7623I 0
u = 1.74717 + 0.03675I
a = 1.63248 + 0.11344I
b = 1.54159 + 0.19584I
10.19430 + 4.27290I 0
u = 1.74717 0.03675I
a = 1.63248 0.11344I
b = 1.54159 0.19584I
10.19430 4.27290I 0
u = 1.75068 + 0.06096I
a = 1.46330 + 0.02059I
b = 1.82396 0.77537I
14.4753 + 2.5419I 0
7
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 1.75068 0.06096I
a = 1.46330 0.02059I
b = 1.82396 + 0.77537I
14.4753 2.5419I 0
u = 1.72022 + 0.43828I
a = 1.34465 0.58112I
b = 1.49438 + 0.29415I
15.2163 + 5.6356I 0
u = 1.72022 0.43828I
a = 1.34465 + 0.58112I
b = 1.49438 0.29415I
15.2163 5.6356I 0
u = 0.0306219 + 0.0974691I
a = 1.93881 + 9.66636I
b = 1.038380 + 0.224787I
1.92040 0.80331I 4.44102 0.15082I
u = 0.0306219 0.0974691I
a = 1.93881 9.66636I
b = 1.038380 0.224787I
1.92040 + 0.80331I 4.44102 + 0.15082I
8
II. I
u
2
= hb
6
b
5
b
4
+ 2b
3
b + 1, a 1, u 1i
(i) Arc colorings
a
1
=
1
0
a
4
=
0
1
a
2
=
1
1
a
5
=
1
0
a
9
=
1
b
a
10
=
b + 1
b
a
11
=
b + 1
b
2
a
6
=
b
3
+ b
2
1
b
4
a
7
=
0
b
5
b
4
2b
3
+ b
2
+ b 1
a
3
=
0
1
a
8
=
0
b
5
b
4
2b
3
+ b
2
+ b 1
a
8
=
0
b
5
b
4
2b
3
+ b
2
+ b 1
(ii) Obstruction class = 1
(iii) Cusp Shapes = 3b
5
+ b
4
+ b
3
2b
2
+ 3b 7
9
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
(u 1)
6
c
2
, c
4
(u + 1)
6
c
3
, c
7
u
6
c
5
, c
8
u
6
3u
5
+ 5u
4
4u
3
+ 2u
2
u + 1
c
6
, c
11
u
6
u
5
u
4
+ 2u
3
u + 1
c
9
, c
10
u
6
+ u
5
u
4
2u
3
+ u + 1
10
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
2
, c
4
(y 1)
6
c
3
, c
7
y
6
c
5
, c
8
y
6
+ y
5
+ 5y
4
+ 6y
2
+ 3y + 1
c
6
, c
9
, c
10
c
11
y
6
3y
5
+ 5y
4
4y
3
+ 2y
2
y + 1
11
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
2
1(vol +
1CS) Cusp shape
u = 1.00000
a = 1.00000
b = 1.002190 + 0.295542I
3.53554 + 0.92430I 12.60470 + 5.55069I
u = 1.00000
a = 1.00000
b = 1.002190 0.295542I
3.53554 0.92430I 12.60470 5.55069I
u = 1.00000
a = 1.00000
b = 0.428243 + 0.664531I
0.245672 + 0.924305I 5.68949 0.25702I
u = 1.00000
a = 1.00000
b = 0.428243 0.664531I
0.245672 0.924305I 5.68949 + 0.25702I
u = 1.00000
a = 1.00000
b = 1.073950 + 0.558752I
1.64493 5.69302I 11.7058 + 8.3306I
u = 1.00000
a = 1.00000
b = 1.073950 0.558752I
1.64493 + 5.69302I 11.7058 8.3306I
12
III. I
u
3
= hb + 1, 2u
2
+ a + 4u + 4, u
3
+ u
2
1i
(i) Arc colorings
a
1
=
1
0
a
4
=
0
u
a
2
=
1
u
2
a
5
=
u
u
2
+ u 1
a
9
=
2u
2
4u 4
1
a
10
=
2u
2
4u 3
1
a
11
=
2u
2
4u 3
1
a
6
=
7u
2
13u 9
u 2
a
7
=
u
u
2
+ u 1
a
3
=
u
2
+ 1
u
2
a
8
=
u
2u
2
+ u 2
a
8
=
u
2u
2
+ u 2
(ii) Obstruction class = 1
(iii) Cusp Shapes = 21u
2
53u 51
13
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
u
3
+ u
2
1
c
2
, c
7
u
3
+ u
2
+ 2u + 1
c
3
u
3
u
2
+ 2u 1
c
4
u
3
u
2
+ 1
c
5
, c
6
u
3
2u
2
3u 1
c
8
u
3
3u
2
+ 2u + 1
c
9
(u 1)
3
c
10
u
3
c
11
(u + 1)
3
14
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
4
y
3
y
2
+ 2y 1
c
2
, c
3
, c
7
y
3
+ 3y
2
+ 2y 1
c
5
, c
6
y
3
10y
2
+ 5y 1
c
8
y
3
5y
2
+ 10y 1
c
9
, c
11
(y 1)
3
c
10
y
3
15
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
3
1(vol +
1CS) Cusp shape
u = 0.877439 + 0.744862I
a = 0.920404 0.365165I
b = 1.00000
1.37919 + 2.82812I 9.0124 12.0277I
u = 0.877439 0.744862I
a = 0.920404 + 0.365165I
b = 1.00000
1.37919 2.82812I 9.0124 + 12.0277I
u = 0.754878
a = 8.15919
b = 1.00000
2.75839 102.980
16
IV. u-Polynomials
Crossings u-Polynomials at each crossing
c
1
((u 1)
6
)(u
3
+ u
2
1)(u
35
8u
34
+ ··· + 9u 1)
c
2
((u + 1)
6
)(u
3
+ u
2
+ 2u + 1)(u
35
+ 42u
34
+ ··· 129u + 1)
c
3
u
6
(u
3
u
2
+ 2u 1)(u
35
+ 2u
34
+ ··· 320u 64)
c
4
((u + 1)
6
)(u
3
u
2
+ 1)(u
35
8u
34
+ ··· + 9u 1)
c
5
(u
3
2u
2
3u 1)(u
6
3u
5
+ 5u
4
4u
3
+ 2u
2
u + 1)
· (u
35
8u
34
+ ··· + 73u + 31)
c
6
(u
3
2u
2
3u 1)(u
6
u
5
u
4
+ 2u
3
u + 1)
· (u
35
4u
34
+ ··· + 1417u + 1219)
c
7
u
6
(u
3
+ u
2
+ 2u + 1)(u
35
+ 2u
34
+ ··· 320u 64)
c
8
(u
3
3u
2
+ 2u + 1)(u
6
3u
5
+ 5u
4
4u
3
+ 2u
2
u + 1)
· (u
35
+ 3u
34
+ ··· + 2u + 1)
c
9
((u 1)
3
)(u
6
+ u
5
+ ··· + u + 1)(u
35
5u
34
+ ··· + 67u 1)
c
10
u
3
(u
6
+ u
5
+ ··· + u + 1)(u
35
+ 6u
34
+ ··· + 124u 8)
c
11
((u + 1)
3
)(u
6
u
5
+ ··· u + 1)(u
35
5u
34
+ ··· + 67u 1)
17
V. Riley Polynomials
Crossings Riley Polynomials at each crossing
c
1
, c
4
((y 1)
6
)(y
3
y
2
+ 2y 1)(y
35
42y
34
+ ··· 129y 1)
c
2
((y 1)
6
)(y
3
+ 3y
2
+ 2y 1)(y
35
90y
34
+ ··· + 6323y 1)
c
3
, c
7
y
6
(y
3
+ 3y
2
+ 2y 1)(y
35
36y
34
+ ··· 20480y 4096)
c
5
(y
3
10y
2
+ 5y 1)(y
6
+ y
5
+ 5y
4
+ 6y
2
+ 3y + 1)
· (y
35
52y
34
+ ··· + 29509y 961)
c
6
(y
3
10y
2
+ 5y 1)(y
6
3y
5
+ 5y
4
4y
3
+ 2y
2
y + 1)
· (y
35
4y
34
+ ··· + 25178641y 1485961)
c
8
(y
3
5y
2
+ 10y 1)(y
6
+ y
5
+ 5y
4
+ 6y
2
+ 3y + 1)
· (y
35
+ y
34
+ ··· + 14y 1)
c
9
, c
11
(y 1)
3
(y
6
3y
5
+ 5y
4
4y
3
+ 2y
2
y + 1)
· (y
35
33y
34
+ ··· + 5091y 1)
c
10
y
3
(y
6
3y
5
+ ··· y + 1)(y
35
+ 18y
34
+ ··· + 7312y 64)
18