11n
52
(K11n
52
)
A knot diagram
1
Linearized knot diagam
4 1 8 2 10 11 4 5 6 9 8
Solving Sequence
5,10 2,6
4 1 3 9 11 8 7
c
5
c
4
c
1
c
2
c
9
c
10
c
8
c
7
c
3
, c
6
, c
11
Ideals for irreducible components
2
of X
par
I
u
1
= h−u
32
u
31
+ ··· + b + u, u
32
u
31
+ ··· + a 1, u
34
+ 2u
33
+ ··· 2u 1i
I
u
2
= hb + 1, u
3
+ u
2
+ a u + 2, u
5
u
4
+ 2u
3
u
2
+ u 1i
* 2 irreducible components of dim
C
= 0, with total 39 representations.
1
The image of knot diagram is generated by the software Draw programme developed by An-
drew Bartholomew(http://www.layer8.co.uk/maths/draw/index.htm#Running-draw), where we modi-
fied some parts for our purpose(https://github.com/CATsTAILs/LinksPainter).
2
All coefficients of polynomials are rational numbers. But the coefficients are sometimes approximated
in decimal forms when there is not enough margin.
1
I.
I
u
1
= h−u
32
u
31
+· · ·+b+u, u
32
u
31
+· · ·+a1, u
34
+2u
33
+· · ·2u1i
(i) Arc colorings
a
5
=
1
0
a
10
=
0
u
a
2
=
u
32
+ u
31
+ ··· 5u
3
+ 1
u
32
+ u
31
+ ··· u
2
u
a
6
=
1
u
2
a
4
=
2u
32
2u
31
+ ··· + u
2
+ u
u
32
u
31
+ ··· + u
2
+ 2u
a
1
=
u
11
2u
9
2u
7
u
3
u
11
3u
9
4u
7
u
5
+ u
3
+ u
a
3
=
4u
32
+ 4u
31
+ ··· 3u 1
2u
32
+ u
31
+ ··· u
2
3u
a
9
=
u
u
3
+ u
a
11
=
u
3
u
5
+ u
3
+ u
a
8
=
u
3
u
3
+ u
a
7
=
u
6
u
4
+ 1
u
8
+ 2u
6
+ 2u
4
a
7
=
u
6
u
4
+ 1
u
8
+ 2u
6
+ 2u
4
(ii) Obstruction class = 1
(iii) Cusp Shapes = 4u
33
11u
32
46u
31
97u
30
238u
29
421u
28
758u
27
1154u
26
1651u
25
2191u
24
2586u
23
2978u
22
2933u
21
2856u
20
2304u
19
1728u
18
973u
17
263u
16
+ 258u
15
+ 646u
14
+ 764u
13
+ 710u
12
+ 560u
11
+ 314u
10
+
160u
9
+ 16u
8
52u
7
64u
6
51u
5
4u
4
+ 16u
3
+ 18u
2
+ 15u + 3
2
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
4
u
34
6u
33
+ ··· + 4u 1
c
2
u
34
+ 10u
33
+ ··· + 2u
2
+ 1
c
3
, c
7
u
34
u
33
+ ··· + 32u + 32
c
5
, c
9
u
34
2u
33
+ ··· + 2u 1
c
6
, c
8
u
34
+ 2u
33
+ ··· 58u 17
c
10
u
34
+ 18u
33
+ ··· + 2u + 1
c
11
u
34
2u
33
+ ··· + 2u + 1
3
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
4
y
34
10y
33
+ ··· + 2y
2
+ 1
c
2
y
34
+ 34y
33
+ ··· + 4y + 1
c
3
, c
7
y
34
33y
33
+ ··· 11776y + 1024
c
5
, c
9
y
34
+ 18y
33
+ ··· + 2y + 1
c
6
, c
8
y
34
22y
33
+ ··· + 682y + 289
c
10
y
34
2y
33
+ ··· 18y + 1
c
11
y
34
+ 38y
33
+ ··· + 2y + 1
4
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.392064 + 0.911772I
a = 1.220400 + 0.149546I
b = 0.151137 0.378084I
0.33123 1.99737I 1.04171 + 3.94659I
u = 0.392064 0.911772I
a = 1.220400 0.149546I
b = 0.151137 + 0.378084I
0.33123 + 1.99737I 1.04171 3.94659I
u = 0.643857 + 0.740919I
a = 0.444510 + 0.058747I
b = 0.919309 0.963610I
7.32303 1.01150I 0.462803 0.538404I
u = 0.643857 0.740919I
a = 0.444510 0.058747I
b = 0.919309 + 0.963610I
7.32303 + 1.01150I 0.462803 + 0.538404I
u = 0.631061 + 0.814143I
a = 1.09866 1.38992I
b = 0.986984 + 0.934448I
7.11131 + 5.93371I 0.19300 5.69756I
u = 0.631061 0.814143I
a = 1.09866 + 1.38992I
b = 0.986984 0.934448I
7.11131 5.93371I 0.19300 + 5.69756I
u = 0.820098 + 0.217356I
a = 1.021230 0.783883I
b = 1.088070 + 0.833628I
3.98565 + 7.54944I 1.73478 4.55602I
u = 0.820098 0.217356I
a = 1.021230 + 0.783883I
b = 1.088070 0.833628I
3.98565 7.54944I 1.73478 + 4.55602I
u = 0.775445 + 0.276843I
a = 0.000113 + 0.147223I
b = 0.749373 0.980750I
5.05465 + 0.88184I 0.0341976 + 0.1167760I
u = 0.775445 0.276843I
a = 0.000113 0.147223I
b = 0.749373 + 0.980750I
5.05465 0.88184I 0.0341976 0.1167760I
5
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.255241 + 1.154760I
a = 1.63194 0.61364I
b = 0.719802 0.838712I
0.59034 2.20193I 5.39762 + 2.89255I
u = 0.255241 1.154760I
a = 1.63194 + 0.61364I
b = 0.719802 + 0.838712I
0.59034 + 2.20193I 5.39762 2.89255I
u = 0.401589 + 1.121620I
a = 0.740490 + 0.229483I
b = 0.867707 + 0.523486I
4.35229 + 1.60461I 8.26502 1.09622I
u = 0.401589 1.121620I
a = 0.740490 0.229483I
b = 0.867707 0.523486I
4.35229 1.60461I 8.26502 + 1.09622I
u = 0.803313
a = 1.12207
b = 0.598522
3.18504 0.914630
u = 0.421626 + 0.667896I
a = 0.457995 0.776702I
b = 0.257061 + 0.435953I
0.37642 1.53920I 0.52977 + 5.14051I
u = 0.421626 0.667896I
a = 0.457995 + 0.776702I
b = 0.257061 0.435953I
0.37642 + 1.53920I 0.52977 5.14051I
u = 0.449017 + 1.136970I
a = 2.83048 1.35162I
b = 1.307530 + 0.065436I
5.63834 3.94702I 6.39479 + 3.36113I
u = 0.449017 1.136970I
a = 2.83048 + 1.35162I
b = 1.307530 0.065436I
5.63834 + 3.94702I 6.39479 3.36113I
u = 0.490186 + 1.136270I
a = 1.31533 + 1.01208I
b = 0.706452 0.661902I
3.70744 + 6.19607I 6.22304 6.67245I
6
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.490186 1.136270I
a = 1.31533 1.01208I
b = 0.706452 + 0.661902I
3.70744 6.19607I 6.22304 + 6.67245I
u = 0.316626 + 1.211300I
a = 1.82873 + 0.86114I
b = 1.058350 + 0.773720I
0.44863 + 3.88868I 6.63703 2.26154I
u = 0.316626 1.211300I
a = 1.82873 0.86114I
b = 1.058350 0.773720I
0.44863 3.88868I 6.63703 + 2.26154I
u = 0.548880 + 1.145350I
a = 0.412467 + 1.244140I
b = 0.692953 + 1.024120I
2.49823 5.83735I 3.10039 + 3.72465I
u = 0.548880 1.145350I
a = 0.412467 1.244140I
b = 0.692953 1.024120I
2.49823 + 5.83735I 3.10039 3.72465I
u = 0.456179 + 1.214870I
a = 1.73132 0.47368I
b = 0.649218 + 0.049959I
6.76337 + 4.50518I 1.87945 4.07859I
u = 0.456179 1.214870I
a = 1.73132 + 0.47368I
b = 0.649218 0.049959I
6.76337 4.50518I 1.87945 + 4.07859I
u = 0.544284 + 1.179770I
a = 2.56097 + 1.10413I
b = 1.127080 0.824983I
1.13195 12.58770I 4.92167 + 7.87699I
u = 0.544284 1.179770I
a = 2.56097 1.10413I
b = 1.127080 + 0.824983I
1.13195 + 12.58770I 4.92167 7.87699I
u = 0.157297 + 0.676103I
a = 1.45465 + 1.84751I
b = 1.034700 0.173788I
2.09473 + 0.78471I 6.87662 + 2.65408I
7
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.157297 0.676103I
a = 1.45465 1.84751I
b = 1.034700 + 0.173788I
2.09473 0.78471I 6.87662 2.65408I
u = 0.637571 + 0.171045I
a = 0.049058 1.073020I
b = 0.658221 + 0.529258I
0.99883 1.83078I 2.95289 + 3.76618I
u = 0.637571 0.171045I
a = 0.049058 + 1.073020I
b = 0.658221 0.529258I
0.99883 + 1.83078I 2.95289 3.76618I
u = 0.592232
a = 1.92705
b = 1.21971
2.64346 1.59530
8
II. I
u
2
= hb + 1, u
3
+ u
2
+ a u + 2, u
5
u
4
+ 2u
3
u
2
+ u 1i
(i) Arc colorings
a
5
=
1
0
a
10
=
0
u
a
2
=
u
3
u
2
+ u 2
1
a
6
=
1
u
2
a
4
=
u
3
u
2
+ u 1
1
a
1
=
1
0
a
3
=
u
3
u
2
+ u 1
1
a
9
=
u
u
3
+ u
a
11
=
u
3
u
4
u
3
+ u
2
+ 1
a
8
=
u
3
u
3
+ u
a
7
=
u
3
u
3
+ u
a
7
=
u
3
u
3
+ u
(ii) Obstruction class = 1
(iii) Cusp Shapes = 2u
4
+ 7u
3
8u
2
+ 6u 12
9
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
(u 1)
5
c
2
, c
4
(u + 1)
5
c
3
, c
7
u
5
c
5
u
5
u
4
+ 2u
3
u
2
+ u 1
c
6
u
5
+ u
4
2u
3
u
2
+ u 1
c
8
, c
11
u
5
u
4
2u
3
+ u
2
+ u + 1
c
9
u
5
+ u
4
+ 2u
3
+ u
2
+ u + 1
c
10
u
5
+ 3u
4
+ 4u
3
+ u
2
u 1
10
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
2
, c
4
(y 1)
5
c
3
, c
7
y
5
c
5
, c
9
y
5
+ 3y
4
+ 4y
3
+ y
2
y 1
c
6
, c
8
, c
11
y
5
5y
4
+ 8y
3
3y
2
y 1
c
10
y
5
y
4
+ 8y
3
3y
2
+ 3y 1
11
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
2
1(vol +
1CS) Cusp shape
u = 0.339110 + 0.822375I
a = 1.12878 + 1.10766I
b = 1.00000
1.97403 1.53058I 5.00899 + 6.23673I
u = 0.339110 0.822375I
a = 1.12878 1.10766I
b = 1.00000
1.97403 + 1.53058I 5.00899 6.23673I
u = 0.766826
a = 1.37029
b = 1.00000
4.04602 9.63840
u = 0.455697 + 1.200150I
a = 2.18608 0.87465I
b = 1.00000
7.51750 + 4.40083I 13.17182 3.02310I
u = 0.455697 1.200150I
a = 2.18608 + 0.87465I
b = 1.00000
7.51750 4.40083I 13.17182 + 3.02310I
12
III. u-Polynomials
Crossings u-Polynomials at each crossing
c
1
((u 1)
5
)(u
34
6u
33
+ ··· + 4u 1)
c
2
((u + 1)
5
)(u
34
+ 10u
33
+ ··· + 2u
2
+ 1)
c
3
, c
7
u
5
(u
34
u
33
+ ··· + 32u + 32)
c
4
((u + 1)
5
)(u
34
6u
33
+ ··· + 4u 1)
c
5
(u
5
u
4
+ 2u
3
u
2
+ u 1)(u
34
2u
33
+ ··· + 2u 1)
c
6
(u
5
+ u
4
2u
3
u
2
+ u 1)(u
34
+ 2u
33
+ ··· 58u 17)
c
8
(u
5
u
4
2u
3
+ u
2
+ u + 1)(u
34
+ 2u
33
+ ··· 58u 17)
c
9
(u
5
+ u
4
+ 2u
3
+ u
2
+ u + 1)(u
34
2u
33
+ ··· + 2u 1)
c
10
(u
5
+ 3u
4
+ 4u
3
+ u
2
u 1)(u
34
+ 18u
33
+ ··· + 2u + 1)
c
11
(u
5
u
4
2u
3
+ u
2
+ u + 1)(u
34
2u
33
+ ··· + 2u + 1)
13
IV. Riley Polynomials
Crossings Riley Polynomials at each crossing
c
1
, c
4
((y 1)
5
)(y
34
10y
33
+ ··· + 2y
2
+ 1)
c
2
((y 1)
5
)(y
34
+ 34y
33
+ ··· + 4y + 1)
c
3
, c
7
y
5
(y
34
33y
33
+ ··· 11776y + 1024)
c
5
, c
9
(y
5
+ 3y
4
+ 4y
3
+ y
2
y 1)(y
34
+ 18y
33
+ ··· + 2y + 1)
c
6
, c
8
(y
5
5y
4
+ 8y
3
3y
2
y 1)(y
34
22y
33
+ ··· + 682y + 289)
c
10
(y
5
y
4
+ 8y
3
3y
2
+ 3y 1)(y
34
2y
33
+ ··· 18y + 1)
c
11
(y
5
5y
4
+ 8y
3
3y
2
y 1)(y
34
+ 38y
33
+ ··· + 2y + 1)
14