11n
53
(K11n
53
)
A knot diagram
1
Linearized knot diagam
4 1 8 2 9 10 4 1 11 6 7
Solving Sequence
7,10
6 11
1,4
2 3 9 5 8
c
6
c
10
c
11
c
1
c
2
c
9
c
5
c
8
c
3
, c
4
, c
7
Ideals for irreducible components
2
of X
par
I
u
1
= h−u
22
+ 2u
21
+ ··· + b + 1, u
21
u
20
+ ··· + 2u
3
+ a, u
23
2u
22
+ ··· 2u + 1i
I
u
2
= hb, u
2
+ a u 1, u
5
+ u
4
+ 2u
3
+ u
2
+ u + 1i
* 2 irreducible components of dim
C
= 0, with total 28 representations.
1
The image of knot diagram is generated by the software Draw programme developed by An-
drew Bartholomew(http://www.layer8.co.uk/maths/draw/index.htm#Running-draw), where we modi-
fied some parts for our purpose(https://github.com/CATsTAILs/LinksPainter).
2
All coefficients of polynomials are rational numbers. But the coefficients are sometimes approximated
in decimal forms when there is not enough margin.
1
I.
I
u
1
= h−u
22
+2u
21
+· · ·+b+1, u
21
u
20
+· · ·+2u
3
+a, u
23
2u
22
+· · ·2u+1i
(i) Arc colorings
a
7
=
1
0
a
10
=
0
u
a
6
=
1
u
2
a
11
=
u
u
3
+ u
a
1
=
u
3
u
3
+ u
a
4
=
u
21
+ u
20
+ ··· u
4
2u
3
u
22
2u
21
+ ··· + 2u 1
a
2
=
u
18
u
17
+ ··· u
2
+ u
u
8
2u
6
2u
4
a
3
=
u
21
+ u
20
+ ··· + 2u 1
u
22
2u
21
+ ··· + u 1
a
9
=
u
3
u
5
+ u
3
+ u
a
5
=
u
6
u
4
+ 1
u
8
+ 2u
6
+ 2u
4
a
8
=
u
11
2u
9
2u
7
u
3
u
11
3u
9
4u
7
u
5
+ u
3
+ u
a
8
=
u
11
2u
9
2u
7
u
3
u
11
3u
9
4u
7
u
5
+ u
3
+ u
(ii) Obstruction class = 1
(iii) Cusp Shapes
= 4u
22
9u
21
+ 30u
20
48u
19
+ 96u
18
131u
17
+ 190u
16
224u
15
+ 249u
14
262u
13
+
237u
12
210u
11
+ 148u
10
93u
9
+ 53u
8
6u
7
14u
6
+ 25u
5
18u
4
10u
2
+ 9u 5
2
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
4
u
23
6u
22
+ ··· + 4u 1
c
2
u
23
+ 32u
22
+ ··· 16u + 1
c
3
, c
7
u
23
u
22
+ ··· + 32u 32
c
5
, c
11
u
23
2u
22
+ ··· + 30u 9
c
6
, c
10
u
23
+ 2u
22
+ ··· 2u 1
c
8
u
23
+ 24u
21
+ ··· + 2u 1
c
9
u
23
12u
22
+ ··· 2u + 1
3
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
4
y
23
32y
22
+ ··· 16y 1
c
2
y
23
76y
22
+ ··· + 772y 1
c
3
, c
7
y
23
+ 33y
22
+ ··· + 3584y 1024
c
5
, c
11
y
23
12y
22
+ ··· 162y 81
c
6
, c
10
y
23
+ 12y
22
+ ··· 2y 1
c
8
y
23
+ 48y
22
+ ··· 2y 1
c
9
y
23
+ 24y
21
+ ··· 6y 1
4
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.700458 + 0.794163I
a = 1.45877 + 0.07887I
b = 0.09416 2.13003I
14.1192 + 2.6463I 3.65714 2.84707I
u = 0.700458 0.794163I
a = 1.45877 0.07887I
b = 0.09416 + 2.13003I
14.1192 2.6463I 3.65714 + 2.84707I
u = 0.855800 + 0.265895I
a = 0.795468 0.188526I
b = 0.45428 1.93201I
11.07970 + 5.13429I 2.96602 2.08249I
u = 0.855800 0.265895I
a = 0.795468 + 0.188526I
b = 0.45428 + 1.93201I
11.07970 5.13429I 2.96602 + 2.08249I
u = 0.366516 + 1.072630I
a = 0.312367 0.791611I
b = 0.215406 0.997383I
1.62847 1.16584I 3.47504 + 0.42481I
u = 0.366516 1.072630I
a = 0.312367 + 0.791611I
b = 0.215406 + 0.997383I
1.62847 + 1.16584I 3.47504 0.42481I
u = 0.477094 + 1.041350I
a = 2.43046 1.25941I
b = 1.105500 + 0.395247I
0.82985 + 3.19017I 0.92409 4.72756I
u = 0.477094 1.041350I
a = 2.43046 + 1.25941I
b = 1.105500 0.395247I
0.82985 3.19017I 0.92409 + 4.72756I
u = 0.270789 + 0.755843I
a = 0.693663 + 0.260910I
b = 0.349805 0.349927I
0.390924 1.217980I 4.26810 + 5.45735I
u = 0.270789 0.755843I
a = 0.693663 0.260910I
b = 0.349805 + 0.349927I
0.390924 + 1.217980I 4.26810 5.45735I
5
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.514060 + 1.104640I
a = 1.31154 + 0.63853I
b = 0.143374 + 1.329070I
0.55803 6.09572I 0.93537 + 6.19372I
u = 0.514060 1.104640I
a = 1.31154 0.63853I
b = 0.143374 1.329070I
0.55803 + 6.09572I 0.93537 6.19372I
u = 0.455035 + 1.182370I
a = 1.061190 + 0.524858I
b = 0.608111 0.025252I
5.15559 + 4.27437I 9.78577 3.28837I
u = 0.455035 1.182370I
a = 1.061190 0.524858I
b = 0.608111 + 0.025252I
5.15559 4.27437I 9.78577 + 3.28837I
u = 0.269522 + 1.238660I
a = 0.24803 + 2.58133I
b = 0.34057 + 1.76704I
6.23110 + 1.56382I 1.72734 0.04821I
u = 0.269522 1.238660I
a = 0.24803 2.58133I
b = 0.34057 1.76704I
6.23110 1.56382I 1.72734 + 0.04821I
u = 0.719779
a = 0.526584
b = 0.562756
1.81820 6.35980
u = 0.573488 + 1.178530I
a = 2.84278 1.00616I
b = 0.57374 1.89861I
8.35091 10.39480I 0.03516 + 5.66347I
u = 0.573488 1.178530I
a = 2.84278 + 1.00616I
b = 0.57374 + 1.89861I
8.35091 + 10.39480I 0.03516 5.66347I
u = 0.469209 + 0.502755I
a = 0.699918 0.973698I
b = 0.674614 + 0.656598I
2.46377 + 0.78545I 4.30142 0.09221I
6
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.469209 0.502755I
a = 0.699918 + 0.973698I
b = 0.674614 0.656598I
2.46377 0.78545I 4.30142 + 0.09221I
u = 0.611511 + 0.287188I
a = 0.036277 0.858010I
b = 0.247796 + 1.071450I
1.75612 + 1.64275I 3.33585 2.40342I
u = 0.611511 0.287188I
a = 0.036277 + 0.858010I
b = 0.247796 1.071450I
1.75612 1.64275I 3.33585 + 2.40342I
7
II. I
u
2
= hb, u
2
+ a u 1, u
5
+ u
4
+ 2u
3
+ u
2
+ u + 1i
(i) Arc colorings
a
7
=
1
0
a
10
=
0
u
a
6
=
1
u
2
a
11
=
u
u
3
+ u
a
1
=
u
3
u
3
+ u
a
4
=
u
2
+ u + 1
0
a
2
=
u
3
+ u
2
+ u + 1
u
3
+ u
a
3
=
u
2
+ u + 1
0
a
9
=
u
3
u
4
u
3
u
2
1
a
5
=
u
3
u
3
u
a
8
=
1
0
a
8
=
1
0
(ii) Obstruction class = 1
(iii) Cusp Shapes = 2u
4
+ u
3
+ 2u
8
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
(u 1)
5
c
2
, c
4
(u + 1)
5
c
3
, c
7
u
5
c
5
, c
8
u
5
u
4
2u
3
+ u
2
+ u + 1
c
6
u
5
+ u
4
+ 2u
3
+ u
2
+ u + 1
c
9
u
5
+ 3u
4
+ 4u
3
+ u
2
u 1
c
10
u
5
u
4
+ 2u
3
u
2
+ u 1
c
11
u
5
+ u
4
2u
3
u
2
+ u 1
9
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
2
, c
4
(y 1)
5
c
3
, c
7
y
5
c
5
, c
8
, c
11
y
5
5y
4
+ 8y
3
3y
2
y 1
c
6
, c
10
y
5
+ 3y
4
+ 4y
3
+ y
2
y 1
c
9
y
5
y
4
+ 8y
3
3y
2
+ 3y 1
10
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
2
1(vol +
1CS) Cusp shape
u = 0.339110 + 0.822375I
a = 0.77780 + 1.38013I
b = 0
1.31583 1.53058I 0.02124 + 2.62456I
u = 0.339110 0.822375I
a = 0.77780 1.38013I
b = 0
1.31583 + 1.53058I 0.02124 2.62456I
u = 0.766826
a = 0.821196
b = 0
0.756147 2.67610
u = 0.455697 + 1.200150I
a = 0.688402 + 0.106340I
b = 0
4.22763 + 4.40083I 0.31681 3.97407I
u = 0.455697 1.200150I
a = 0.688402 0.106340I
b = 0
4.22763 4.40083I 0.31681 + 3.97407I
11
III. u-Polynomials
Crossings u-Polynomials at each crossing
c
1
((u 1)
5
)(u
23
6u
22
+ ··· + 4u 1)
c
2
((u + 1)
5
)(u
23
+ 32u
22
+ ··· 16u + 1)
c
3
, c
7
u
5
(u
23
u
22
+ ··· + 32u 32)
c
4
((u + 1)
5
)(u
23
6u
22
+ ··· + 4u 1)
c
5
(u
5
u
4
2u
3
+ u
2
+ u + 1)(u
23
2u
22
+ ··· + 30u 9)
c
6
(u
5
+ u
4
+ 2u
3
+ u
2
+ u + 1)(u
23
+ 2u
22
+ ··· 2u 1)
c
8
(u
5
u
4
2u
3
+ u
2
+ u + 1)(u
23
+ 24u
21
+ ··· + 2u 1)
c
9
(u
5
+ 3u
4
+ 4u
3
+ u
2
u 1)(u
23
12u
22
+ ··· 2u + 1)
c
10
(u
5
u
4
+ 2u
3
u
2
+ u 1)(u
23
+ 2u
22
+ ··· 2u 1)
c
11
(u
5
+ u
4
2u
3
u
2
+ u 1)(u
23
2u
22
+ ··· + 30u 9)
12
IV. Riley Polynomials
Crossings Riley Polynomials at each crossing
c
1
, c
4
((y 1)
5
)(y
23
32y
22
+ ··· 16y 1)
c
2
((y 1)
5
)(y
23
76y
22
+ ··· + 772y 1)
c
3
, c
7
y
5
(y
23
+ 33y
22
+ ··· + 3584y 1024)
c
5
, c
11
(y
5
5y
4
+ 8y
3
3y
2
y 1)(y
23
12y
22
+ ··· 162y 81)
c
6
, c
10
(y
5
+ 3y
4
+ 4y
3
+ y
2
y 1)(y
23
+ 12y
22
+ ··· 2y 1)
c
8
(y
5
5y
4
+ 8y
3
3y
2
y 1)(y
23
+ 48y
22
+ ··· 2y 1)
c
9
(y
5
y
4
+ 8y
3
3y
2
+ 3y 1)(y
23
+ 24y
21
+ ··· 6y 1)
13