9
31
(K9a
13
)
A knot diagram
1
Linearized knot diagam
5 6 7 1 9 8 4 3 2
Solving Sequence
4,7
8 3 9 6 2 1 5
c
7
c
3
c
8
c
6
c
2
c
9
c
5
c
1
, c
4
Ideals for irreducible components
2
of X
par
I
u
1
= hu
7
2u
5
+ 2u
3
u
2
+ 1i
I
u
2
= hu
20
+ u
19
+ ··· + 2u + 1i
* 2 irreducible components of dim
C
= 0, with total 27 representations.
1
The image of knot diagram is generated by the software Draw programme developed by An-
drew Bartholomew(http://www.layer8.co.uk/maths/draw/index.htm#Running-draw), where we modi-
fied some parts for our purpose(https://github.com/CATsTAILs/LinksPainter).
2
All coefficients of polynomials are rational numbers. But the coefficients are sometimes approximated
in decimal forms when there is not enough margin.
1
I. I
u
1
= hu
7
2u
5
+ 2u
3
u
2
+ 1i
(i) Arc colorings
a
4
=
0
u
a
7
=
1
0
a
8
=
1
u
2
a
3
=
u
u
a
9
=
u
4
u
2
+ 1
u
4
a
6
=
u
2
+ 1
u
4
a
2
=
u
2
1
u
5
+ u
4
2u
3
+ u 1
a
1
=
1
u
6
+ u
4
+ u
3
+ 1
a
5
=
u
u
5
u
4
2u
3
+ u
2
1
a
5
=
u
u
5
u
4
2u
3
+ u
2
1
(ii) Obstruction class = 1
(iii) Cusp Shapes = 4u
5
+ 4u
4
8u
3
4u
2
+ 4u 6
2
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
3
, c
4
c
7
u
7
2u
5
+ 2u
3
u
2
+ 1
c
2
u
7
5u
6
+ 12u
5
17u
4
+ 15u
3
5u
2
4u + 4
c
5
, c
8
u
7
+ 2u
5
2u
4
+ 4u
3
u
2
+ 2u + 1
c
6
, c
9
u
7
+ 4u
6
+ 8u
5
+ 8u
4
+ 4u
3
+ u
2
+ 2u + 1
3
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
3
, c
4
c
7
y
7
4y
6
+ 8y
5
8y
4
+ 4y
3
y
2
+ 2y 1
c
2
y
7
y
6
+ 4y
5
+ 13y
4
y
3
9y
2
+ 56y 16
c
5
, c
8
y
7
+ 4y
6
+ 12y
5
+ 16y
4
+ 20y
3
+ 19y
2
+ 6y 1
c
6
, c
9
y
7
+ 8y
5
4y
4
+ 24y
3
y
2
+ 2y 1
4
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 1.125110 + 0.343189I
5.94607 3.76357I 10.60460 + 4.24459I
u = 1.125110 0.343189I
5.94607 + 3.76357I 10.60460 4.24459I
u = 0.364544 + 0.701794I
1.82567 + 1.84683I 1.12815 1.09324I
u = 0.364544 0.701794I
1.82567 1.84683I 1.12815 + 1.09324I
u = 1.125830 + 0.566290I
2.65707 + 11.68630I 5.70307 8.84509I
u = 1.125830 0.566290I
2.65707 11.68630I 5.70307 + 8.84509I
u = 0.727635
1.24946 7.64100
5
II. I
u
2
= hu
20
+ u
19
4u
18
5u
17
+ 8u
16
+ 13u
15
7u
14
20u
13
u
12
+
19u
11
+ 10u
10
10u
9
11u
8
+ 2u
7
+ 7u
6
+ u
5
3u
4
u
3
+ 2u
2
+ 2u + 1i
(i) Arc colorings
a
4
=
0
u
a
7
=
1
0
a
8
=
1
u
2
a
3
=
u
u
a
9
=
u
4
u
2
+ 1
u
4
a
6
=
u
2
+ 1
u
4
a
2
=
u
7
2u
5
+ 2u
3
u
9
u
7
+ u
5
+ u
a
1
=
u
19
u
18
+ ··· 3u
2
2u
u
11
3u
9
+ 4u
7
3u
5
+ u
3
u 1
a
5
=
u
12
3u
10
+ 5u
8
4u
6
+ 2u
4
u
2
+ 1
u
12
2u
10
+ 2u
8
u
4
a
5
=
u
12
3u
10
+ 5u
8
4u
6
+ 2u
4
u
2
+ 1
u
12
2u
10
+ 2u
8
u
4
(ii) Obstruction class = 1
(iii) Cusp Shapes
= 4u
18
16u
16
+36u
14
48u
12
+44u
10
28u
8
4u
7
+16u
6
+8u
5
8u
4
8u
3
+4u
2
+4u 2
6
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
3
, c
4
c
7
u
20
+ u
19
+ ··· + 2u + 1
c
2
(u
10
+ 2u
9
+ u
8
+ 4u
6
+ 6u
5
+ u
4
6u
3
5u
2
+ 1)
2
c
5
, c
8
u
20
+ 3u
19
+ ··· + 16u + 5
c
6
, c
9
u
20
+ 9u
19
+ ··· + 2u
2
+ 1
7
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
3
, c
4
c
7
y
20
9y
19
+ ··· + 2y
2
+ 1
c
2
(y
10
2y
9
+ ··· 10y + 1)
2
c
5
, c
8
y
20
+ 3y
19
+ ··· + 204y + 25
c
6
, c
9
y
20
+ 3y
19
+ ··· + 4y + 1
8
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
2
1(vol +
1CS) Cusp shape
u = 0.941429 + 0.547698I
0.197299 2.26625 + 0.I
u = 0.941429 0.547698I
0.197299 2.26625 + 0.I
u = 1.061040 + 0.273586I
2.27340 + 0.51998I 5.71661 0.77505I
u = 1.061040 0.273586I
2.27340 0.51998I 5.71661 + 0.77505I
u = 0.626658 + 0.633601I
1.11960 + 4.65452I 0.79654 6.04247I
u = 0.626658 0.633601I
1.11960 4.65452I 0.79654 + 6.04247I
u = 1.128770 + 0.240119I
4.83313 + 3.92983I 9.04400 3.21471I
u = 1.128770 0.240119I
4.83313 3.92983I 9.04400 + 3.21471I
u = 1.016360 + 0.552370I
1.11960 4.65452I 0.79654 + 6.04247I
u = 1.016360 0.552370I
1.11960 + 4.65452I 0.79654 6.04247I
u = 0.330984 + 0.758157I
0.32496 6.68616I 2.49331 + 5.21994I
u = 0.330984 0.758157I
0.32496 + 6.68616I 2.49331 5.21994I
u = 0.527984 + 0.630206I
2.55688 2.36717 + 0.I
u = 0.527984 0.630206I
2.55688 2.36717 + 0.I
u = 1.119570 + 0.508145I
4.83313 + 3.92983I 9.04400 3.21471I
u = 1.119570 0.508145I
4.83313 3.92983I 9.04400 + 3.21471I
u = 1.102100 + 0.557039I
0.32496 6.68616I 2.49331 + 5.21994I
u = 1.102100 0.557039I
0.32496 + 6.68616I 2.49331 5.21994I
u = 0.195538 + 0.653472I
2.27340 + 0.51998I 5.71661 0.77505I
u = 0.195538 0.653472I
2.27340 0.51998I 5.71661 + 0.77505I
9
III. u-Polynomials
Crossings u-Polynomials at each crossing
c
1
, c
3
, c
4
c
7
(u
7
2u
5
+ 2u
3
u
2
+ 1)(u
20
+ u
19
+ ··· + 2u + 1)
c
2
(u
7
5u
6
+ 12u
5
17u
4
+ 15u
3
5u
2
4u + 4)
· (u
10
+ 2u
9
+ u
8
+ 4u
6
+ 6u
5
+ u
4
6u
3
5u
2
+ 1)
2
c
5
, c
8
(u
7
+ 2u
5
2u
4
+ 4u
3
u
2
+ 2u + 1)(u
20
+ 3u
19
+ ··· + 16u + 5)
c
6
, c
9
(u
7
+ 4u
6
+ ··· + 2u + 1)(u
20
+ 9u
19
+ ··· + 2u
2
+ 1)
10
IV. Riley Polynomials
Crossings Riley Polynomials at each crossing
c
1
, c
3
, c
4
c
7
(y
7
4y
6
+ ··· + 2y 1)(y
20
9y
19
+ ··· + 2y
2
+ 1)
c
2
(y
7
y
6
+ 4y
5
+ 13y
4
y
3
9y
2
+ 56y 16)
· (y
10
2y
9
+ ··· 10y + 1)
2
c
5
, c
8
(y
7
+ 4y
6
+ 12y
5
+ 16y
4
+ 20y
3
+ 19y
2
+ 6y 1)
· (y
20
+ 3y
19
+ ··· + 204y + 25)
c
6
, c
9
(y
7
+ 8y
5
+ ··· + 2y 1)(y
20
+ 3y
19
+ ··· + 4y + 1)
11