11n
58
(K11n
58
)
A knot diagram
1
Linearized knot diagam
4 1 9 2 9 10 11 3 1 7 6
Solving Sequence
6,10
7 11 8
1,3
2 9 4 5
c
6
c
10
c
7
c
11
c
2
c
9
c
3
c
4
c
1
, c
5
, c
8
Ideals for irreducible components
2
of X
par
I
u
1
= h−u
21
u
20
+ ··· + 5u
2
+ b, u
14
+ 7u
12
18u
10
+ 19u
8
6u
6
+ 2u
4
+ 2u
3
4u
2
+ a 4u 1,
u
22
+ 2u
21
+ ··· 4u
2
1i
I
u
2
= hb + 1, u
3
+ a 2u, u
5
u
4
2u
3
+ u
2
+ u + 1i
* 2 irreducible components of dim
C
= 0, with total 27 representations.
1
The image of knot diagram is generated by the software Draw programme developed by An-
drew Bartholomew(http://www.layer8.co.uk/maths/draw/index.htm#Running-draw), where we modi-
fied some parts for our purpose(https://github.com/CATsTAILs/LinksPainter).
2
All coefficients of polynomials are rational numbers. But the coefficients are sometimes approximated
in decimal forms when there is not enough margin.
1
I. I
u
1
=
h−u
21
u
20
+· · · + 5 u
2
+b, u
14
+7u
12
+· · · + a 1, u
22
+2u
21
+· · · 4u
2
1i
(i) Arc colorings
a
6
=
1
0
a
10
=
0
u
a
7
=
1
u
2
a
11
=
u
u
3
+ u
a
8
=
u
2
+ 1
u
4
2u
2
a
1
=
u
3
+ 2u
u
3
+ u
a
3
=
u
14
7u
12
+ 18u
10
19u
8
+ 6u
6
2u
4
2u
3
+ 4u
2
+ 4u + 1
u
21
+ u
20
+ ··· 9u
3
5u
2
a
2
=
u
21
+ u
20
+ ··· + 5u + 1
3u
21
+ 2u
20
+ ··· + u 1
a
9
=
u
7
4u
5
+ 4u
3
u
7
3u
5
+ 2u
3
+ u
a
4
=
2u
21
2u
20
+ ··· + 4u + 2
u
21
+ u
20
+ ··· 5u
2
+ u
a
5
=
u
14
7u
12
+ 18u
10
19u
8
+ 4u
6
+ 4u
4
1
u
14
6u
12
+ 13u
10
10u
8
2u
6
+ 4u
4
+ u
2
a
5
=
u
14
7u
12
+ 18u
10
19u
8
+ 4u
6
+ 4u
4
1
u
14
6u
12
+ 13u
10
10u
8
2u
6
+ 4u
4
+ u
2
(ii) Obstruction class = 1
(iii) Cusp Shapes
= 2u
21
4u
20
+ 20u
19
+ 37u
18
87u
17
136u
16
+ 219u
15
+ 241u
14
359u
13
186u
12
+
398u
11
+ 17u
10
277u
9
+ 14u
8
+ 98u
7
+ 38u
6
34u
5
18u
4
+ 36u
3
+ 13u
2
u 2
2
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
4
u
22
6u
21
+ ··· + 6u 1
c
2
u
22
+ 2u
21
+ ··· + 2u + 1
c
3
, c
8
u
22
u
21
+ ··· 64u + 32
c
5
u
22
+ 2u
21
+ ··· + 2996u 1960
c
6
, c
7
, c
10
u
22
2u
21
+ ··· 4u
2
1
c
9
u
22
2u
21
+ ··· 2u + 1
c
11
u
22
+ 6u
21
+ ··· 64u 17
3
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
4
y
22
2y
21
+ ··· 2y + 1
c
2
y
22
+ 42y
21
+ ··· 62y + 1
c
3
, c
8
y
22
33y
21
+ ··· 7680y + 1024
c
5
y
22
+ 66y
21
+ ··· + 61827024y + 3841600
c
6
, c
7
, c
10
y
22
22y
21
+ ··· + 8y + 1
c
9
y
22
+ 30y
21
+ ··· + 8y + 1
c
11
y
22
14y
21
+ ··· 2056y + 289
4
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.547451 + 0.687554I
a = 1.64917 + 1.79616I
b = 0.18168 + 2.30378I
10.04630 1.61926I 3.79117 0.60262I
u = 0.547451 0.687554I
a = 1.64917 1.79616I
b = 0.18168 2.30378I
10.04630 + 1.61926I 3.79117 + 0.60262I
u = 0.477782 + 0.730631I
a = 1.68752 2.10270I
b = 0.07337 2.34864I
9.80847 + 6.35147I 3.22096 4.88727I
u = 0.477782 0.730631I
a = 1.68752 + 2.10270I
b = 0.07337 + 2.34864I
9.80847 6.35147I 3.22096 + 4.88727I
u = 1.15891
a = 0.585194
b = 0.132093
1.97038 6.11980
u = 0.253735 + 0.636077I
a = 0.333427 + 0.841858I
b = 0.032077 + 0.372929I
0.10442 2.33425I 2.92732 + 5.10863I
u = 0.253735 0.636077I
a = 0.333427 0.841858I
b = 0.032077 0.372929I
0.10442 + 2.33425I 2.92732 5.10863I
u = 1.33846
a = 1.06516
b = 1.56525
1.80329 6.37870
u = 1.374360 + 0.085773I
a = 0.046048 1.048570I
b = 0.632067 + 0.872611I
3.07940 2.15283I 3.96233 + 2.53077I
u = 1.374360 0.085773I
a = 0.046048 + 1.048570I
b = 0.632067 0.872611I
3.07940 + 2.15283I 3.96233 2.53077I
5
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.458175 + 0.412746I
a = 1.044590 0.139124I
b = 0.311064 0.023201I
1.10436 0.93215I 5.59687 + 3.71705I
u = 0.458175 0.412746I
a = 1.044590 + 0.139124I
b = 0.311064 + 0.023201I
1.10436 + 0.93215I 5.59687 3.71705I
u = 1.384260 + 0.250179I
a = 0.084137 0.456690I
b = 0.043050 0.643455I
5.30289 + 5.58097I 6.98899 5.83204I
u = 1.384260 0.250179I
a = 0.084137 + 0.456690I
b = 0.043050 + 0.643455I
5.30289 5.58097I 6.98899 + 5.83204I
u = 1.46039 + 0.14631I
a = 0.589431 0.029298I
b = 0.810187 + 0.008550I
7.28227 + 3.02618I 8.05288 2.57798I
u = 1.46039 0.14631I
a = 0.589431 + 0.029298I
b = 0.810187 0.008550I
7.28227 3.02618I 8.05288 + 2.57798I
u = 1.50300 + 0.26177I
a = 1.77777 + 0.03837I
b = 0.23595 + 2.50634I
16.2359 9.9783I 6.35264 + 4.88027I
u = 1.50300 0.26177I
a = 1.77777 0.03837I
b = 0.23595 2.50634I
16.2359 + 9.9783I 6.35264 4.88027I
u = 1.52245 + 0.22649I
a = 1.49085 + 0.18083I
b = 0.42745 2.45052I
16.8152 1.7067I 7.03198 + 0.67482I
u = 1.52245 0.22649I
a = 1.49085 0.18083I
b = 0.42745 + 2.45052I
16.8152 + 1.7067I 7.03198 0.67482I
6
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.152064 + 0.338601I
a = 1.36411 + 1.84123I
b = 0.929357 0.322994I
1.75639 + 0.64723I 5.17438 + 1.08919I
u = 0.152064 0.338601I
a = 1.36411 1.84123I
b = 0.929357 + 0.322994I
1.75639 0.64723I 5.17438 1.08919I
7
II. I
u
2
= hb + 1, u
3
+ a 2u, u
5
u
4
2u
3
+ u
2
+ u + 1i
(i) Arc colorings
a
6
=
1
0
a
10
=
0
u
a
7
=
1
u
2
a
11
=
u
u
3
+ u
a
8
=
u
2
+ 1
u
4
2u
2
a
1
=
u
3
+ 2u
u
3
+ u
a
3
=
u
3
+ 2u
1
a
2
=
2u
3
+ 4u
u
3
+ u 1
a
9
=
u
2
+ 1
u
4
2u
2
a
4
=
u
3
+ 2u
1
a
5
=
u
3
2u
u
3
u
a
5
=
u
3
2u
u
3
u
(ii) Obstruction class = 1
(iii) Cusp Shapes = 3u
3
u
2
+ 8u + 3
8
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
(u 1)
5
c
2
, c
4
(u + 1)
5
c
3
, c
8
u
5
c
5
, c
9
u
5
+ u
4
+ 2u
3
+ u
2
+ u + 1
c
6
, c
7
u
5
u
4
2u
3
+ u
2
+ u + 1
c
10
u
5
+ u
4
2u
3
u
2
+ u 1
c
11
u
5
3u
4
+ 4u
3
u
2
u + 1
9
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
2
, c
4
(y 1)
5
c
3
, c
8
y
5
c
5
, c
9
y
5
+ 3y
4
+ 4y
3
+ y
2
y 1
c
6
, c
7
, c
10
y
5
5y
4
+ 8y
3
3y
2
y 1
c
11
y
5
y
4
+ 8y
3
3y
2
+ 3y 1
10
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
2
1(vol +
1CS) Cusp shape
u = 1.21774
a = 0.629714
b = 1.00000
0.756147 2.80750
u = 0.309916 + 0.549911I
a = 0.871221 + 1.107660I
b = 1.00000
1.31583 1.53058I 0.02714 + 4.76366I
u = 0.309916 0.549911I
a = 0.871221 1.107660I
b = 1.00000
1.31583 + 1.53058I 0.02714 4.76366I
u = 1.41878 + 0.21917I
a = 0.186078 0.874646I
b = 1.00000
4.22763 + 4.40083I 4.43089 2.80751I
u = 1.41878 0.21917I
a = 0.186078 + 0.874646I
b = 1.00000
4.22763 4.40083I 4.43089 + 2.80751I
11
III. u-Polynomials
Crossings u-Polynomials at each crossing
c
1
((u 1)
5
)(u
22
6u
21
+ ··· + 6u 1)
c
2
((u + 1)
5
)(u
22
+ 2u
21
+ ··· + 2u + 1)
c
3
, c
8
u
5
(u
22
u
21
+ ··· 64u + 32)
c
4
((u + 1)
5
)(u
22
6u
21
+ ··· + 6u 1)
c
5
(u
5
+ u
4
+ 2u
3
+ u
2
+ u + 1)(u
22
+ 2u
21
+ ··· + 2996u 1960)
c
6
, c
7
(u
5
u
4
2u
3
+ u
2
+ u + 1)(u
22
2u
21
+ ··· 4u
2
1)
c
9
(u
5
+ u
4
+ 2u
3
+ u
2
+ u + 1)(u
22
2u
21
+ ··· 2u + 1)
c
10
(u
5
+ u
4
2u
3
u
2
+ u 1)(u
22
2u
21
+ ··· 4u
2
1)
c
11
(u
5
3u
4
+ 4u
3
u
2
u + 1)(u
22
+ 6u
21
+ ··· 64u 17)
12
IV. Riley Polynomials
Crossings Riley Polynomials at each crossing
c
1
, c
4
((y 1)
5
)(y
22
2y
21
+ ··· 2y + 1)
c
2
((y 1)
5
)(y
22
+ 42y
21
+ ··· 62y + 1)
c
3
, c
8
y
5
(y
22
33y
21
+ ··· 7680y + 1024)
c
5
(y
5
+ 3y
4
+ 4y
3
+ y
2
y 1)
· (y
22
+ 66y
21
+ ··· + 61827024y + 3841600)
c
6
, c
7
, c
10
(y
5
5y
4
+ 8y
3
3y
2
y 1)(y
22
22y
21
+ ··· + 8y + 1)
c
9
(y
5
+ 3y
4
+ 4y
3
+ y
2
y 1)(y
22
+ 30y
21
+ ··· + 8y + 1)
c
11
(y
5
y
4
+ 8y
3
3y
2
+ 3y 1)(y
22
14y
21
+ ··· 2056y + 289)
13