11n
59
(K11n
59
)
A knot diagram
1
Linearized knot diagam
4 1 7 2 11 10 4 5 6 7 9
Solving Sequence
6,9
10 7 11
1,4
3 2 5 8
c
9
c
6
c
10
c
11
c
3
c
2
c
5
c
8
c
1
, c
4
, c
7
Ideals for irreducible components
2
of X
par
I
u
1
= hu
18
8u
16
+ 25u
14
36u
12
+ 19u
10
+ 4u
8
+ 2u
7
2u
6
6u
5
4u
4
+ 4u
3
+ u
2
+ b + 2u,
u
29
u
28
+ ··· + a 1, u
31
+ 2u
30
+ ··· + 2u + 1i
I
u
2
= h−u
4
+ 2u
2
+ b, u
3
+ a + u + 1, u
5
u
4
2u
3
+ u
2
+ u + 1i
* 2 irreducible components of dim
C
= 0, with total 36 representations.
1
The image of knot diagram is generated by the software Draw programme developed by An-
drew Bartholomew(http://www.layer8.co.uk/maths/draw/index.htm#Running-draw), where we modi-
fied some parts for our purpose(https://github.com/CATsTAILs/LinksPainter).
2
All coefficients of polynomials are rational numbers. But the coefficients are sometimes approximated
in decimal forms when there is not enough margin.
1
I.
I
u
1
= hu
18
8u
16
+· · ·+b+2u, u
29
u
28
+· · ·+a1, u
31
+2u
30
+· · ·+2u+1i
(i) Arc colorings
a
6
=
0
u
a
9
=
1
0
a
10
=
1
u
2
a
7
=
u
u
3
+ u
a
11
=
u
2
+ 1
u
4
+ 2u
2
a
1
=
u
4
+ u
2
+ 1
u
4
+ 2u
2
a
4
=
u
29
+ u
28
+ ··· + u + 1
u
18
+ 8u
16
+ ··· u
2
2u
a
3
=
2u
30
+ 2u
29
+ ··· + 2u + 2
2u
30
+ u
29
+ ··· + u + 2
a
2
=
u
30
+ u
29
+ ··· + 2u + 2
u
30
13u
28
+ ··· + 7u
3
+ 1
a
5
=
u
5
2u
3
+ u
u
7
3u
5
+ 2u
3
+ u
a
8
=
u
12
5u
10
+ 9u
8
6u
6
+ u
2
+ 1
u
14
6u
12
+ 13u
10
10u
8
2u
6
+ 4u
4
+ u
2
a
8
=
u
12
5u
10
+ 9u
8
6u
6
+ u
2
+ 1
u
14
6u
12
+ 13u
10
10u
8
2u
6
+ 4u
4
+ u
2
(ii) Obstruction class = 1
(iii) Cusp Shapes
= 2u
30
26u
28
+ 5u
27
+ 147u
26
59u
25
460u
24
+ 296u
23
+ 817u
22
799u
21
658u
20
+ 1179u
19
269u
18
741u
17
+ 1010u
16
254u
15
570u
14
+ 536u
13
222u
12
2u
11
+ 186u
10
168u
9
+ 98u
8
68u
7
u
6
+ 41u
5
40u
4
+ 35u
3
19u
2
+ 5u 6
2
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
4
u
31
6u
30
+ ··· 4u + 1
c
2
u
31
+ 8u
30
+ ··· + 12u + 1
c
3
, c
7
u
31
+ u
30
+ ··· + 64u + 32
c
5
u
31
6u
30
+ ··· 18u + 5
c
6
, c
9
, c
10
u
31
+ 2u
30
+ ··· + 2u + 1
c
8
u
31
2u
30
+ ··· + 2u + 1
c
11
u
31
+ 8u
30
+ ··· + 30u + 7
3
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
4
y
31
8y
30
+ ··· + 12y 1
c
2
y
31
+ 36y
30
+ ··· + 48y 1
c
3
, c
7
y
31
+ 33y
30
+ ··· 10752y 1024
c
5
y
31
+ 4y
30
+ ··· + 174y 25
c
6
, c
9
, c
10
y
31
28y
30
+ ··· + 2y 1
c
8
y
31
36y
30
+ ··· + 2y 1
c
11
y
31
+ 32y
29
+ ··· + 1054y 49
4
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.953391 + 0.341205I
a = 0.060208 0.824217I
b = 0.154559 1.385810I
5.55958 3.20800I 6.18542 + 3.44031I
u = 0.953391 0.341205I
a = 0.060208 + 0.824217I
b = 0.154559 + 1.385810I
5.55958 + 3.20800I 6.18542 3.44031I
u = 0.825063 + 0.385979I
a = 0.618554 + 1.193580I
b = 0.63882 + 1.61785I
5.21409 + 3.77786I 6.77733 1.30179I
u = 0.825063 0.385979I
a = 0.618554 1.193580I
b = 0.63882 1.61785I
5.21409 3.77786I 6.77733 + 1.30179I
u = 0.256805 + 0.769307I
a = 1.018830 0.906649I
b = 0.90393 + 1.86214I
7.07782 7.98216I 4.46644 + 5.97470I
u = 0.256805 0.769307I
a = 1.018830 + 0.906649I
b = 0.90393 1.86214I
7.07782 + 7.98216I 4.46644 5.97470I
u = 1.191040 + 0.124902I
a = 0.150730 + 0.017487I
b = 0.447590 + 0.550052I
1.84615 + 0.55694I 6.11373 + 0.01533I
u = 1.191040 0.124902I
a = 0.150730 0.017487I
b = 0.447590 0.550052I
1.84615 0.55694I 6.11373 0.01533I
u = 0.195264 + 0.773377I
a = 1.255470 + 0.164780I
b = 0.177950 1.155760I
7.92090 0.90622I 3.00591 + 1.13607I
u = 0.195264 0.773377I
a = 1.255470 0.164780I
b = 0.177950 + 1.155760I
7.92090 + 0.90622I 3.00591 1.13607I
5
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.371835 + 0.568068I
a = 0.797944 0.031326I
b = 0.214074 0.837766I
0.87857 + 1.75044I 3.85072 4.54648I
u = 0.371835 0.568068I
a = 0.797944 + 0.031326I
b = 0.214074 + 0.837766I
0.87857 1.75044I 3.85072 + 4.54648I
u = 1.325090 + 0.154351I
a = 2.42287 + 0.53159I
b = 1.338960 0.362468I
5.25829 1.15681I 12.57201 + 1.48822I
u = 1.325090 0.154351I
a = 2.42287 0.53159I
b = 1.338960 + 0.362468I
5.25829 + 1.15681I 12.57201 1.48822I
u = 0.156640 + 0.637516I
a = 0.041090 1.349110I
b = 0.896955 + 0.568672I
1.00966 + 2.22196I 3.40092 5.38737I
u = 0.156640 0.637516I
a = 0.041090 + 1.349110I
b = 0.896955 0.568672I
1.00966 2.22196I 3.40092 + 5.38737I
u = 1.351700 + 0.206762I
a = 0.051503 0.972430I
b = 0.62993 1.46088I
6.05722 + 3.45238I 10.37888 2.19312I
u = 1.351700 0.206762I
a = 0.051503 + 0.972430I
b = 0.62993 + 1.46088I
6.05722 3.45238I 10.37888 + 2.19312I
u = 1.355400 + 0.255032I
a = 1.82855 0.84093I
b = 1.180600 + 0.666054I
3.77819 5.48065I 9.45984 + 5.94075I
u = 1.355400 0.255032I
a = 1.82855 + 0.84093I
b = 1.180600 0.666054I
3.77819 + 5.48065I 9.45984 5.94075I
6
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 1.374710 + 0.318270I
a = 1.72875 0.73774I
b = 0.359105 0.934571I
2.95558 + 4.85038I 7.33363 2.61184I
u = 1.374710 0.318270I
a = 1.72875 + 0.73774I
b = 0.359105 + 0.934571I
2.95558 4.85038I 7.33363 + 2.61184I
u = 1.40893 + 0.31052I
a = 2.64694 + 0.69829I
b = 1.12415 + 1.93346I
1.77560 + 11.89500I 8.90588 6.87931I
u = 1.40893 0.31052I
a = 2.64694 0.69829I
b = 1.12415 1.93346I
1.77560 11.89500I 8.90588 + 6.87931I
u = 1.45164 + 0.04136I
a = 0.77948 + 1.85121I
b = 0.915385 + 0.997789I
1.95006 2.95334I 10.65956 + 2.73175I
u = 1.45164 0.04136I
a = 0.77948 1.85121I
b = 0.915385 0.997789I
1.95006 + 2.95334I 10.65956 2.73175I
u = 1.43633 + 0.21708I
a = 0.458519 1.234670I
b = 0.376409 1.104670I
6.67621 4.65354I 6.91647 + 4.60285I
u = 1.43633 0.21708I
a = 0.458519 + 1.234670I
b = 0.376409 + 1.104670I
6.67621 + 4.65354I 6.91647 4.60285I
u = 0.127284 + 0.484686I
a = 0.09092 + 1.50930I
b = 0.622522 0.861672I
1.33374 0.83076I 4.07951 0.75098I
u = 0.127284 0.484686I
a = 0.09092 1.50930I
b = 0.622522 + 0.861672I
1.33374 + 0.83076I 4.07951 + 0.75098I
7
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.336229
a = 1.24262
b = 0.739715
0.889878 11.7880
8
II. I
u
2
= h−u
4
+ 2u
2
+ b, u
3
+ a + u + 1, u
5
u
4
2u
3
+ u
2
+ u + 1i
(i) Arc colorings
a
6
=
0
u
a
9
=
1
0
a
10
=
1
u
2
a
7
=
u
u
3
+ u
a
11
=
u
2
+ 1
u
4
+ 2u
2
a
1
=
u
4
+ u
2
+ 1
u
4
+ 2u
2
a
4
=
u
3
u 1
u
4
2u
2
a
3
=
u
3
u 1
u
4
2u
2
a
2
=
u
4
+ u
3
+ u
2
u
0
a
5
=
u
4
u
2
1
u
4
2u
2
a
8
=
u
u
3
+ u
a
8
=
u
u
3
+ u
(ii) Obstruction class = 1
(iii) Cusp Shapes = 3u
3
+ u
2
8u 15
9
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
(u 1)
5
c
2
, c
4
(u + 1)
5
c
3
, c
7
u
5
c
5
u
5
3u
4
+ 4u
3
u
2
u + 1
c
6
u
5
+ u
4
2u
3
u
2
+ u 1
c
8
, c
11
u
5
+ u
4
+ 2u
3
+ u
2
+ u + 1
c
9
, c
10
u
5
u
4
2u
3
+ u
2
+ u + 1
10
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
2
, c
4
(y 1)
5
c
3
, c
7
y
5
c
5
y
5
y
4
+ 8y
3
3y
2
+ 3y 1
c
6
, c
9
, c
10
y
5
5y
4
+ 8y
3
3y
2
y 1
c
8
, c
11
y
5
+ 3y
4
+ 4y
3
+ y
2
y 1
11
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
2
1(vol +
1CS) Cusp shape
u = 1.21774
a = 1.58802
b = 0.766826
4.04602 9.19250
u = 0.309916 + 0.549911I
a = 0.438694 0.557752I
b = 0.339110 + 0.822375I
1.97403 + 1.53058I 11.97286 4.76366I
u = 0.309916 0.549911I
a = 0.438694 + 0.557752I
b = 0.339110 0.822375I
1.97403 1.53058I 11.97286 + 4.76366I
u = 1.41878 + 0.21917I
a = 0.232705 + 1.093810I
b = 0.455697 + 1.200150I
7.51750 4.40083I 16.4309 + 2.8075I
u = 1.41878 0.21917I
a = 0.232705 1.093810I
b = 0.455697 1.200150I
7.51750 + 4.40083I 16.4309 2.8075I
12
III. u-Polynomials
Crossings u-Polynomials at each crossing
c
1
((u 1)
5
)(u
31
6u
30
+ ··· 4u + 1)
c
2
((u + 1)
5
)(u
31
+ 8u
30
+ ··· + 12u + 1)
c
3
, c
7
u
5
(u
31
+ u
30
+ ··· + 64u + 32)
c
4
((u + 1)
5
)(u
31
6u
30
+ ··· 4u + 1)
c
5
(u
5
3u
4
+ 4u
3
u
2
u + 1)(u
31
6u
30
+ ··· 18u + 5)
c
6
(u
5
+ u
4
2u
3
u
2
+ u 1)(u
31
+ 2u
30
+ ··· + 2u + 1)
c
8
(u
5
+ u
4
+ 2u
3
+ u
2
+ u + 1)(u
31
2u
30
+ ··· + 2u + 1)
c
9
, c
10
(u
5
u
4
2u
3
+ u
2
+ u + 1)(u
31
+ 2u
30
+ ··· + 2u + 1)
c
11
(u
5
+ u
4
+ 2u
3
+ u
2
+ u + 1)(u
31
+ 8u
30
+ ··· + 30u + 7)
13
IV. Riley Polynomials
Crossings Riley Polynomials at each crossing
c
1
, c
4
((y 1)
5
)(y
31
8y
30
+ ··· + 12y 1)
c
2
((y 1)
5
)(y
31
+ 36y
30
+ ··· + 48y 1)
c
3
, c
7
y
5
(y
31
+ 33y
30
+ ··· 10752y 1024)
c
5
(y
5
y
4
+ 8y
3
3y
2
+ 3y 1)(y
31
+ 4y
30
+ ··· + 174y 25)
c
6
, c
9
, c
10
(y
5
5y
4
+ 8y
3
3y
2
y 1)(y
31
28y
30
+ ··· + 2y 1)
c
8
(y
5
+ 3y
4
+ 4y
3
+ y
2
y 1)(y
31
36y
30
+ ··· + 2y 1)
c
11
(y
5
+ 3y
4
+ 4y
3
+ y
2
y 1)(y
31
+ 32y
29
+ ··· + 1054y 49)
14