11n
61
(K11n
61
)
A knot diagram
1
Linearized knot diagam
4 1 8 2 9 10 1 4 11 7 6
Solving Sequence
6,10
7 11
1,4
2 3 9 5 8
c
6
c
10
c
11
c
1
c
2
c
9
c
5
c
8
c
3
, c
4
, c
7
Ideals for irreducible components
2
of X
par
I
u
1
= h−u
13
u
12
+ 2u
11
+ 3u
10
2u
9
4u
8
+ 4u
6
+ 2u
5
2u
4
u
3
+ 2u
2
+ b + u,
u
11
+ u
10
2u
9
3u
8
+ 2u
7
+ 4u
6
4u
4
u
3
+ 2u
2
+ a 2,
u
14
+ 2u
13
u
12
6u
11
2u
10
+ 8u
9
+ 7u
8
6u
7
10u
6
+ 6u
4
4u
2
u + 1i
I
u
2
= hb + 1, u
4
u
2
+ a + u, u
6
u
5
u
4
+ 2u
3
u + 1i
* 2 irreducible components of dim
C
= 0, with total 20 representations.
1
The image of knot diagram is generated by the software Draw programme developed by An-
drew Bartholomew(http://www.layer8.co.uk/maths/draw/index.htm#Running-draw), where we modi-
fied some parts for our purpose(https://github.com/CATsTAILs/LinksPainter).
2
All coefficients of polynomials are rational numbers. But the coefficients are sometimes approximated
in decimal forms when there is not enough margin.
1
I.
I
u
1
= h−u
13
u
12
+ · · · + b + u, u
11
+ u
10
+ · · · + a 2, u
14
+ 2u
13
+ · · · u + 1i
(i) Arc colorings
a
6
=
1
0
a
10
=
0
u
a
7
=
1
u
2
a
11
=
u
u
3
+ u
a
1
=
u
3
u
3
+ u
a
4
=
u
11
u
10
+ 2u
9
+ 3u
8
2u
7
4u
6
+ 4u
4
+ u
3
2u
2
+ 2
u
13
+ u
12
2u
11
3u
10
+ 2u
9
+ 4u
8
4u
6
2u
5
+ 2u
4
+ u
3
2u
2
u
a
2
=
u
13
u
12
+ ··· + u 2
u
13
u
12
+ 2u
11
+ 4u
10
2u
9
6u
8
+ 7u
6
+ 2u
5
4u
4
u
3
+ 3u
2
+ u
a
3
=
2u
13
2u
12
+ ··· + 3u 3
u
13
u
12
+ ··· u
3
+ 5u
2
a
9
=
u
3
u
5
u
3
+ u
a
5
=
u
8
u
6
+ u
4
+ 1
u
10
+ 2u
8
3u
6
+ 2u
4
u
2
a
8
=
u
8
u
6
+ u
4
+ 1
u
8
+ 2u
6
2u
4
a
8
=
u
8
u
6
+ u
4
+ 1
u
8
+ 2u
6
2u
4
(ii) Obstruction class = 1
(iii) Cusp Shapes =
8u
13
+10u
12
16u
11
35u
10
+13u
9
+55u
8
+10u
7
57u
6
34u
5
+28u
4
+22u
3
19u
2
16u2
2
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
4
u
14
7u
13
+ ··· + 4u 1
c
2
u
14
+ 29u
13
+ ··· + 2u + 1
c
3
, c
8
u
14
u
13
+ ··· 64u 64
c
5
, c
7
u
14
+ 2u
13
+ ··· + 3u + 1
c
6
, c
10
u
14
2u
13
+ ··· + u + 1
c
9
u
14
6u
13
+ ··· 9u + 1
c
11
u
14
6u
13
+ ··· u 5
3
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
4
y
14
29y
13
+ ··· 2y + 1
c
2
y
14
129y
13
+ ··· + 462y + 1
c
3
, c
8
y
14
39y
13
+ ··· + 8192y + 4096
c
5
, c
7
y
14
30y
13
+ ··· 9y + 1
c
6
, c
10
y
14
6y
13
+ ··· 9y + 1
c
9
y
14
+ 6y
13
+ ··· 25y + 1
c
11
y
14
6y
13
+ ··· 301y + 25
4
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.959410 + 0.328783I
a = 0.495533 0.463828I
b = 0.191801 + 0.163474I
1.63965 1.19495I 1.59955 + 1.11588I
u = 0.959410 0.328783I
a = 0.495533 + 0.463828I
b = 0.191801 0.163474I
1.63965 + 1.19495I 1.59955 1.11588I
u = 0.501889 + 0.920209I
a = 0.201970 + 0.008787I
b = 2.28288 0.17435I
19.1238 + 2.3664I 10.04321 0.09569I
u = 0.501889 0.920209I
a = 0.201970 0.008787I
b = 2.28288 + 0.17435I
19.1238 2.3664I 10.04321 + 0.09569I
u = 0.853744 + 0.641916I
a = 0.29441 + 1.45158I
b = 1.59669 0.17157I
3.47956 2.50408I 8.95669 + 2.99860I
u = 0.853744 0.641916I
a = 0.29441 1.45158I
b = 1.59669 + 0.17157I
3.47956 + 2.50408I 8.95669 2.99860I
u = 1.014210 + 0.562829I
a = 0.229267 0.800962I
b = 0.036725 + 0.627532I
0.01563 + 4.65799I 4.40917 5.70687I
u = 1.014210 0.562829I
a = 0.229267 + 0.800962I
b = 0.036725 0.627532I
0.01563 4.65799I 4.40917 + 5.70687I
u = 0.589347 + 0.525928I
a = 0.836757 + 0.496215I
b = 0.355616 0.529402I
1.309150 0.137583I 8.56031 + 0.56305I
u = 0.589347 0.525928I
a = 0.836757 0.496215I
b = 0.355616 + 0.529402I
1.309150 + 0.137583I 8.56031 0.56305I
5
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 1.25934
a = 2.87186
b = 2.12501
13.7717 5.12960
u = 1.128420 + 0.686699I
a = 1.08197 2.42300I
b = 2.21915 + 0.28216I
18.4364 8.2751I 7.93412 + 4.24282I
u = 1.128420 0.686699I
a = 1.08197 + 2.42300I
b = 2.21915 0.28216I
18.4364 + 8.2751I 7.93412 4.24282I
u = 0.420479
a = 1.82253
b = 0.681509
1.01289 10.2630
6
II. I
u
2
= hb + 1, u
4
u
2
+ a + u, u
6
u
5
u
4
+ 2u
3
u + 1i
(i) Arc colorings
a
6
=
1
0
a
10
=
0
u
a
7
=
1
u
2
a
11
=
u
u
3
+ u
a
1
=
u
3
u
3
+ u
a
4
=
u
4
+ u
2
u
1
a
2
=
u
4
+ u
3
+ u
2
u
u
3
+ u 1
a
3
=
u
4
+ u
2
u
1
a
9
=
u
3
u
5
u
3
+ u
a
5
=
u
3
u
3
u
a
8
=
u
3
u
5
u
3
+ u
a
8
=
u
3
u
5
u
3
+ u
(ii) Obstruction class = 1
(iii) Cusp Shapes = 4u
4
+ 3u
2
3u 9
7
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
(u 1)
6
c
2
, c
4
(u + 1)
6
c
3
, c
8
u
6
c
5
, c
7
, c
10
u
6
+ u
5
u
4
2u
3
+ u + 1
c
6
u
6
u
5
u
4
+ 2u
3
u + 1
c
9
, c
11
u
6
+ 3u
5
+ 5u
4
+ 4u
3
+ 2u
2
+ u + 1
8
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
2
, c
4
(y 1)
6
c
3
, c
8
y
6
c
5
, c
6
, c
7
c
10
y
6
3y
5
+ 5y
4
4y
3
+ 2y
2
y + 1
c
9
, c
11
y
6
+ y
5
+ 5y
4
+ 6y
2
+ 3y + 1
9
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
2
1(vol +
1CS) Cusp shape
u = 1.002190 + 0.295542I
a = 1.42918 + 0.19856I
b = 1.00000
0.245672 0.924305I 5.20252 + 1.68215I
u = 1.002190 0.295542I
a = 1.42918 0.19856I
b = 1.00000
0.245672 + 0.924305I 5.20252 1.68215I
u = 0.428243 + 0.664531I
a = 0.429179 + 0.198557I
b = 1.00000
3.53554 0.92430I 10.03026 + 0.88960I
u = 0.428243 0.664531I
a = 0.429179 0.198557I
b = 1.00000
3.53554 + 0.92430I 10.03026 0.88960I
u = 1.073950 + 0.558752I
a = 0.50000 1.37764I
b = 1.00000
1.64493 + 5.69302I 6.76721 6.15196I
u = 1.073950 0.558752I
a = 0.50000 + 1.37764I
b = 1.00000
1.64493 5.69302I 6.76721 + 6.15196I
10
III. u-Polynomials
Crossings u-Polynomials at each crossing
c
1
((u 1)
6
)(u
14
7u
13
+ ··· + 4u 1)
c
2
((u + 1)
6
)(u
14
+ 29u
13
+ ··· + 2u + 1)
c
3
, c
8
u
6
(u
14
u
13
+ ··· 64u 64)
c
4
((u + 1)
6
)(u
14
7u
13
+ ··· + 4u 1)
c
5
, c
7
(u
6
+ u
5
u
4
2u
3
+ u + 1)(u
14
+ 2u
13
+ ··· + 3u + 1)
c
6
(u
6
u
5
u
4
+ 2u
3
u + 1)(u
14
2u
13
+ ··· + u + 1)
c
9
(u
6
+ 3u
5
+ 5u
4
+ 4u
3
+ 2u
2
+ u + 1)(u
14
6u
13
+ ··· 9u + 1)
c
10
(u
6
+ u
5
u
4
2u
3
+ u + 1)(u
14
2u
13
+ ··· + u + 1)
c
11
(u
6
+ 3u
5
+ 5u
4
+ 4u
3
+ 2u
2
+ u + 1)(u
14
6u
13
+ ··· u 5)
11
IV. Riley Polynomials
Crossings Riley Polynomials at each crossing
c
1
, c
4
((y 1)
6
)(y
14
29y
13
+ ··· 2y + 1)
c
2
((y 1)
6
)(y
14
129y
13
+ ··· + 462y + 1)
c
3
, c
8
y
6
(y
14
39y
13
+ ··· + 8192y + 4096)
c
5
, c
7
(y
6
3y
5
+ 5y
4
4y
3
+ 2y
2
y + 1)(y
14
30y
13
+ ··· 9y + 1)
c
6
, c
10
(y
6
3y
5
+ 5y
4
4y
3
+ 2y
2
y + 1)(y
14
6y
13
+ ··· 9y + 1)
c
9
(y
6
+ y
5
+ 5y
4
+ 6y
2
+ 3y + 1)(y
14
+ 6y
13
+ ··· 25y + 1)
c
11
(y
6
+ y
5
+ 5y
4
+ 6y
2
+ 3y + 1)(y
14
6y
13
+ ··· 301y + 25)
12