11n
65
(K11n
65
)
A knot diagram
1
Linearized knot diagam
4 1 8 2 9 11 3 6 5 1 6
Solving Sequence
2,4 5,9
6 10 1 8 3 11 7
c
4
c
5
c
9
c
1
c
8
c
3
c
11
c
6
c
2
, c
7
, c
10
Ideals for irreducible components
2
of X
par
I
u
1
= h2666u
12
2811u
11
+ ··· + 9382b + 3250, 1563u
12
+ 2980u
11
+ ··· + 18764a + 7547,
u
13
2u
12
2u
11
+ 7u
10
u
9
9u
8
+ 16u
7
18u
6
2u
5
+ 33u
4
24u
3
10u
2
+ 17u 4i
I
u
2
= h−u
4
+ u
3
+ 2u
2
+ b a u 1, u
4
2u
2
a 2u
3
+ a
2
+ au + 2a + u + 2, u
5
u
4
2u
3
+ u
2
+ u + 1i
I
u
3
= h−u
2
a + au u
2
+ b + u 1, 2u
2
a + a
2
4au + 3u
2
+ 2a 6u + 5, u
3
u
2
+ 1i
I
u
4
= h2b + 1, 2a 1, u + 1i
* 4 irreducible components of dim
C
= 0, with total 30 representations.
1
The image of knot diagram is generated by the software Draw programme developed by An-
drew Bartholomew(http://www.layer8.co.uk/maths/draw/index.htm#Running-draw), where we modi-
fied some parts for our purpose(https://github.com/CATsTAILs/LinksPainter).
2
All coefficients of polynomials are rational numbers. But the coefficients are sometimes approximated
in decimal forms when there is not enough margin.
1
I. I
u
1
= h2666u
12
2811u
11
+ · · · + 9382b + 3250, 1563u
12
+ 2980u
11
+
· · · + 18764a + 7547, u
13
2u
12
+ · · · + 17u 4i
(i) Arc colorings
a
2
=
0
u
a
4
=
1
0
a
5
=
1
u
2
a
9
=
0.0832978u
12
0.158815u
11
+ ··· 2.36613u 0.402206
0.284161u
12
+ 0.299616u
11
+ ··· + 3.21925u 0.346408
a
6
=
0.0329887u
12
+ 0.0405031u
11
+ ··· + 0.801428u + 1.42640
0.0613942u
12
0.0681091u
11
+ ··· 0.833191u + 0.0125773
a
10
=
0.00314432u
12
+ 0.0551055u
11
+ ··· + 0.652206u 0.779738
0.0254743u
12
+ 0.129823u
11
+ ··· + 1.98721u 0.131955
a
1
=
u
u
a
8
=
0.0853763u
12
0.131848u
11
+ ··· 2.30228u 1.25187
0.481454u
12
+ 0.401300u
11
+ ··· + 4.61810u 0.548284
a
3
=
u
3
u
3
+ u
a
11
=
0.168674u
12
+ 0.0269665u
11
+ ··· + 1.06385u 0.849659
0.197293u
12
+ 0.101684u
11
+ ··· + 2.39885u 0.201876
a
7
=
0.334683u
12
0.465039u
11
+ ··· 4.08719u + 3.28384
0.169154u
12
0.382967u
11
+ ··· 3.37114u + 0.654445
a
7
=
0.334683u
12
0.465039u
11
+ ··· 4.08719u + 3.28384
0.169154u
12
0.382967u
11
+ ··· 3.37114u + 0.654445
(ii) Obstruction class = 1
(iii) Cusp Shapes =
34825
18764
u
12
68759
18764
u
11
+ ···
496503
18764
u +
97945
4691
2
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
4
u
13
2u
12
+ ··· + 17u 4
c
2
u
13
+ 8u
12
+ ··· + 209u + 16
c
3
, c
7
u
13
+ 3u
12
+ ··· 2u 8
c
5
, c
6
, c
8
c
9
, c
11
u
13
u
12
+ ··· + u 1
c
10
u
13
+ 19u
12
+ ··· 13u 1
3
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
4
y
13
8y
12
+ ··· + 209y 16
c
2
y
13
4y
12
+ ··· + 22817y 256
c
3
, c
7
y
13
3y
12
+ ··· + 180y 64
c
5
, c
6
, c
8
c
9
, c
11
y
13
+ 19y
12
+ ··· 13y 1
c
10
y
13
49y
12
+ ··· 61y 1
4
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.955186 + 0.433947I
a = 0.471198 0.436221I
b = 0.755123 0.031476I
0.903643 0.585016I 4.40140 + 1.35233I
u = 0.955186 0.433947I
a = 0.471198 + 0.436221I
b = 0.755123 + 0.031476I
0.903643 + 0.585016I 4.40140 1.35233I
u = 0.933504 + 0.177892I
a = 0.617558 + 0.567691I
b = 0.473971 + 0.403774I
1.65953 + 0.62739I 3.40176 1.52650I
u = 0.933504 0.177892I
a = 0.617558 0.567691I
b = 0.473971 0.403774I
1.65953 0.62739I 3.40176 + 1.52650I
u = 0.869334 + 0.624757I
a = 0.420041 + 0.925939I
b = 0.581132 + 0.140274I
1.00399 3.84064I 5.54977 + 8.01840I
u = 0.869334 0.624757I
a = 0.420041 0.925939I
b = 0.581132 0.140274I
1.00399 + 3.84064I 5.54977 8.01840I
u = 0.028967 + 1.273930I
a = 0.158932 + 0.197003I
b = 0.05120 2.05742I
12.48260 + 4.81706I 0.19074 2.27482I
u = 0.028967 1.273930I
a = 0.158932 0.197003I
b = 0.05120 + 2.05742I
12.48260 4.81706I 0.19074 + 2.27482I
u = 1.46956 + 0.59251I
a = 0.85770 1.47458I
b = 0.52077 2.38909I
17.2166 11.4167I 1.78764 + 5.02800I
u = 1.46956 0.59251I
a = 0.85770 + 1.47458I
b = 0.52077 + 2.38909I
17.2166 + 11.4167I 1.78764 5.02800I
5
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 1.49484 + 0.63529I
a = 0.82284 1.22627I
b = 0.74959 1.95511I
17.0497 + 2.0233I 2.18781 0.87077I
u = 1.49484 0.63529I
a = 0.82284 + 1.22627I
b = 0.74959 + 1.95511I
17.0497 2.0233I 2.18781 + 0.87077I
u = 0.326480
a = 1.02499
b = 0.455205
0.885241 11.4840
6
II. I
u
2
= h−u
4
+ u
3
+ 2u
2
+ b a u 1, u
4
2u
2
a 2u
3
+ a
2
+ au + 2a +
u + 2, u
5
u
4
2u
3
+ u
2
+ u + 1i
(i) Arc colorings
a
2
=
0
u
a
4
=
1
0
a
5
=
1
u
2
a
9
=
a
u
4
u
3
2u
2
+ a + u + 1
a
6
=
u
4
a 2u
2
a 2u
2
+ a + u + 2
u
3
a u
4
+ 2u
3
2au 2u + 1
a
10
=
u
4
u
2
a u
3
2u
2
+ 2a + u + 1
u
4
a + u
4
+ u
2
a u
3
2u
2
+ a + 1
a
1
=
u
u
a
8
=
2u
4
+ 3u
2
+ 1
u
4
+ 2u
2
a
3
=
u
3
u
3
+ u
a
11
=
u
4
a + u
3
a + u
4
2u
2
a 2au 2u
2
+ a + u + 1
u
3
a + u
4
2au 2u
2
+ 1
a
7
=
4u
4
6u
2
2u 2
2u
4
4u
2
u
a
7
=
4u
4
6u
2
2u 2
2u
4
4u
2
u
(ii) Obstruction class = 1
(iii) Cusp Shapes = 4u
3
8u 2
7
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
4
(u
5
u
4
2u
3
+ u
2
+ u + 1)
2
c
2
(u
5
+ 5u
4
+ 8u
3
+ 3u
2
u + 1)
2
c
3
, c
7
(u
5
u
4
+ 2u
3
u
2
+ u 1)
2
c
5
, c
6
, c
8
c
9
, c
11
u
10
+ 3u
9
+ ··· + 32u + 17
c
10
u
10
+ 11u
9
+ ··· + 1016u + 289
8
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
4
(y
5
5y
4
+ 8y
3
3y
2
y 1)
2
c
2
(y
5
9y
4
+ 32y
3
35y
2
5y 1)
2
c
3
, c
7
(y
5
+ 3y
4
+ 4y
3
+ y
2
y 1)
2
c
5
, c
6
, c
8
c
9
, c
11
y
10
+ 11y
9
+ ··· + 1016y + 289
c
10
y
10
25y
9
+ ··· + 78660y + 83521
9
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
2
1(vol +
1CS) Cusp shape
u = 1.21774
a = 1.09175 + 2.32396I
b = 1.91295 + 2.32396I
5.69095 0.518860
u = 1.21774
a = 1.09175 2.32396I
b = 1.91295 2.32396I
5.69095 0.518860
u = 0.309916 + 0.549911I
a = 0.653120 + 0.123189I
b = 0.12468 + 1.50332I
3.61897 + 1.53058I 1.48489 4.43065I
u = 0.309916 + 0.549911I
a = 1.44967 1.35480I
b = 0.671868 + 0.025324I
3.61897 + 1.53058I 1.48489 4.43065I
u = 0.309916 0.549911I
a = 0.653120 0.123189I
b = 0.12468 1.50332I
3.61897 1.53058I 1.48489 + 4.43065I
u = 0.309916 0.549911I
a = 1.44967 + 1.35480I
b = 0.671868 0.025324I
3.61897 1.53058I 1.48489 + 4.43065I
u = 1.41878 + 0.21917I
a = 0.171660 0.827142I
b = 0.516743 0.720802I
9.16243 4.40083I 2.74431 + 3.49859I
u = 1.41878 + 0.21917I
a = 0.33938 + 1.85177I
b = 0.34902 + 1.95811I
9.16243 4.40083I 2.74431 + 3.49859I
u = 1.41878 0.21917I
a = 0.171660 + 0.827142I
b = 0.516743 + 0.720802I
9.16243 + 4.40083I 2.74431 3.49859I
u = 1.41878 0.21917I
a = 0.33938 1.85177I
b = 0.34902 1.95811I
9.16243 + 4.40083I 2.74431 3.49859I
10
III.
I
u
3
= h−u
2
a+auu
2
+b+u1, 2u
2
a+a
2
4au+3u
2
+2a6u+5, u
3
u
2
+1i
(i) Arc colorings
a
2
=
0
u
a
4
=
1
0
a
5
=
1
u
2
a
9
=
a
u
2
a au + u
2
u + 1
a
6
=
u
2
a au + 3u
2
+ a 5u + 4
u
2
a au + 2u
2
3u + 3
a
10
=
au + u
2
+ a u + 1
au + 2u
2
+ a 2u + 1
a
1
=
u
u
a
8
=
au u
2
+ u 1
u
2
a u
2
a + u
a
3
=
u
2
+ 1
u
2
+ u + 1
a
11
=
au + u
2
+ a + 1
au + 2u
2
+ a u + 1
a
7
=
u
2
a + u 1
u
2
a + u 1
a
7
=
u
2
a + u 1
u
2
a + u 1
(ii) Obstruction class = 1
(iii) Cusp Shapes = 4u 4
11
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
(u
3
+ u
2
1)
2
c
2
(u
3
+ u
2
+ 2u + 1)
2
c
3
, c
7
u
6
3u
4
+ 2u
2
+ 1
c
4
(u
3
u
2
+ 1)
2
c
5
, c
6
, c
8
c
9
, c
11
(u
2
+ 1)
3
c
10
(u 1)
6
12
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
4
(y
3
y
2
+ 2y 1)
2
c
2
(y
3
+ 3y
2
+ 2y 1)
2
c
3
, c
7
(y
3
3y
2
+ 2y + 1)
2
c
5
, c
6
, c
8
c
9
, c
11
(y + 1)
6
c
10
(y 1)
6
13
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
3
1(vol +
1CS) Cusp shape
u = 0.877439 + 0.744862I
a = 1.102080 + 0.844941I
b = 0.867423 + 0.622301I
0.26574 2.82812I 0.49024 + 2.97945I
u = 0.877439 + 0.744862I
a = 0.022482 0.479777I
b = 0.622301 + 0.867423I
0.26574 2.82812I 0.49024 + 2.97945I
u = 0.877439 0.744862I
a = 1.102080 0.844941I
b = 0.867423 0.622301I
0.26574 + 2.82812I 0.49024 2.97945I
u = 0.877439 0.744862I
a = 0.022482 + 0.479777I
b = 0.622301 0.867423I
0.26574 + 2.82812I 0.49024 2.97945I
u = 0.754878
a = 3.07960 + 1.32472I
b = 1.75488 + 1.75488I
4.40332 7.01950
u = 0.754878
a = 3.07960 1.32472I
b = 1.75488 1.75488I
4.40332 7.01950
14
IV. I
u
4
= h2b + 1, 2a 1, u + 1i
(i) Arc colorings
a
2
=
0
1
a
4
=
1
0
a
5
=
1
1
a
9
=
0.5
0.5
a
6
=
1.5
0.5
a
10
=
0.5
1.5
a
1
=
1
1
a
8
=
2
0
a
3
=
1
0
a
11
=
0.5
0.5
a
7
=
2
0
a
7
=
2
0
(ii) Obstruction class = 1
(iii) Cusp Shapes = 2.25
15
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
8
, c
9
c
11
u 1
c
2
, c
4
, c
5
c
6
, c
10
u + 1
c
3
, c
7
u
16
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
2
, c
4
c
5
, c
6
, c
8
c
9
, c
10
, c
11
y 1
c
3
, c
7
y
17
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
4
1(vol +
1CS) Cusp shape
u = 1.00000
a = 0.500000
b = 0.500000
0 2.25000
18
V. u-Polynomials
Crossings u-Polynomials at each crossing
c
1
(u 1)(u
3
+ u
2
1)
2
(u
5
u
4
2u
3
+ u
2
+ u + 1)
2
· (u
13
2u
12
+ ··· + 17u 4)
c
2
(u + 1)(u
3
+ u
2
+ 2u + 1)
2
(u
5
+ 5u
4
+ 8u
3
+ 3u
2
u + 1)
2
· (u
13
+ 8u
12
+ ··· + 209u + 16)
c
3
, c
7
u(u
5
u
4
+ 2u
3
u
2
+ u 1)
2
(u
6
3u
4
+ 2u
2
+ 1)
· (u
13
+ 3u
12
+ ··· 2u 8)
c
4
(u + 1)(u
3
u
2
+ 1)
2
(u
5
u
4
2u
3
+ u
2
+ u + 1)
2
· (u
13
2u
12
+ ··· + 17u 4)
c
5
, c
6
(u + 1)(u
2
+ 1)
3
(u
10
+ 3u
9
+ ··· + 32u + 17)(u
13
u
12
+ ··· + u 1)
c
8
, c
9
, c
11
(u 1)(u
2
+ 1)
3
(u
10
+ 3u
9
+ ··· + 32u + 17)(u
13
u
12
+ ··· + u 1)
c
10
((u 1)
6
)(u + 1)(u
10
+ 11u
9
+ ··· + 1016u + 289)
· (u
13
+ 19u
12
+ ··· 13u 1)
19
VI. Riley Polynomials
Crossings Riley Polynomials at each crossing
c
1
, c
4
(y 1)(y
3
y
2
+ 2y 1)
2
(y
5
5y
4
+ 8y
3
3y
2
y 1)
2
· (y
13
8y
12
+ ··· + 209y 16)
c
2
(y 1)(y
3
+ 3y
2
+ 2y 1)
2
(y
5
9y
4
+ 32y
3
35y
2
5y 1)
2
· (y
13
4y
12
+ ··· + 22817y 256)
c
3
, c
7
y(y
3
3y
2
+ 2y + 1)
2
(y
5
+ 3y
4
+ 4y
3
+ y
2
y 1)
2
· (y
13
3y
12
+ ··· + 180y 64)
c
5
, c
6
, c
8
c
9
, c
11
(y 1)(y + 1)
6
(y
10
+ 11y
9
+ ··· + 1016y + 289)
· (y
13
+ 19y
12
+ ··· 13y 1)
c
10
((y 1)
7
)(y
10
25y
9
+ ··· + 78660y + 83521)
· (y
13
49y
12
+ ··· 61y 1)
20