11n
66
(K11n
66
)
A knot diagram
1
Linearized knot diagam
4 1 9 2 10 9 11 3 6 8 10
Solving Sequence
3,8
9
4,11
7 6 10 1 2 5
c
8
c
3
c
7
c
6
c
10
c
11
c
2
c
4
c
1
, c
5
, c
9
Ideals for irreducible components
2
of X
par
I
u
1
= h4750254357724u
19
+ 14627504028936u
18
+ ··· + 23633551708361b 81147234294199,
74233627976373u
19
270771524553115u
18
+ ··· + 378136827333776a + 1442548033804746,
u
20
+ 3u
19
+ ··· 6u + 8i
I
u
2
= hu
2
a + b + 1, 2u
10
a 6u
11
+ ··· + a 2,
u
12
u
11
u
10
+ 2u
9
+ 3u
8
4u
7
2u
6
+ 4u
5
+ 2u
4
3u
3
u
2
+ 1i
I
u
3
= h−u
5
+ 2u
3
+ b u, u
4
+ 2u
3
+ 3u
2
+ a 3u 2, u
6
3u
4
+ 2u
2
+ 1i
I
v
1
= ha, b 1, 2v + 1i
* 4 irreducible components of dim
C
= 0, with total 51 representations.
1
The image of knot diagram is generated by the software Draw programme developed by An-
drew Bartholomew(http://www.layer8.co.uk/maths/draw/index.htm#Running-draw), where we modi-
fied some parts for our purpose(https://github.com/CATsTAILs/LinksPainter).
2
All coefficients of polynomials are rational numbers. But the coefficients are sometimes approximated
in decimal forms when there is not enough margin.
1
I.
I
u
1
= h4.75×10
12
u
19
+1.46×10
13
u
18
+· · ·+2.36×10
13
b8.11×10
13
, 7.42×
10
13
u
19
2.71×10
14
u
18
+· · ·+3.78×10
14
a+1.44×10
15
, u
20
+3u
19
+· · ·6u+8i
(i) Arc colorings
a
3
=
0
u
a
8
=
1
0
a
9
=
1
u
2
a
4
=
u
u
3
+ u
a
11
=
0.196314u
19
+ 0.716068u
18
+ ··· 3.73611u 3.81488
0.200996u
19
0.618930u
18
+ ··· + 3.09511u + 3.43356
a
7
=
0.00468201u
19
+ 0.0971380u
18
+ ··· 0.640997u 0.381323
0.238201u
19
+ 0.712561u
18
+ ··· 3.79968u 2.54409
a
6
=
0.196314u
19
+ 0.716068u
18
+ ··· 3.73611u 3.81488
0.107586u
19
+ 0.364861u
18
+ ··· 2.28735u 2.41656
a
10
=
0.00468201u
19
+ 0.0971380u
18
+ ··· 0.640997u 0.381323
0.200996u
19
0.618930u
18
+ ··· + 3.09511u + 3.43356
a
1
=
0.0380706u
19
+ 0.0221177u
18
+ ··· 0.0686952u 0.889509
0.467904u
19
1.50365u
18
+ ··· + 8.10809u + 6.85079
a
2
=
0.0279992u
19
+ 0.365360u
18
+ ··· 2.48168u 2.62009
0.344443u
19
1.03168u
18
+ ··· + 5.35346u + 6.28047
a
5
=
0.429833u
19
1.52577u
18
+ ··· + 8.17678u + 7.74030
0.345787u
19
1.07742u
18
+ ··· + 6.08703u + 4.96065
a
5
=
0.429833u
19
1.52577u
18
+ ··· + 8.17678u + 7.74030
0.345787u
19
1.07742u
18
+ ··· + 6.08703u + 4.96065
(ii) Obstruction class = 1
(iii) Cusp Shapes
=
29166765795697
27009773380984
u
19
107025259759479
27009773380984
u
18
+ ··· +
889027178406181
27009773380984
u +
218402675148733
13504886690492
2
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
4
u
20
2u
19
+ ··· 3u 4
c
2
u
20
+ 10u
19
+ ··· + 65u + 16
c
3
, c
8
u
20
3u
19
+ ··· + 6u + 8
c
5
, c
6
, c
7
c
9
, c
10
u
20
+ u
19
+ ··· + u
2
1
c
11
u
20
5u
19
+ ··· + 2u + 1
3
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
4
y
20
10y
19
+ ··· 65y + 16
c
2
y
20
+ 2y
19
+ ··· + 3935y + 256
c
3
, c
8
y
20
9y
19
+ ··· 372y + 64
c
5
, c
6
, c
7
c
9
, c
10
y
20
+ 5y
19
+ ··· 2y + 1
c
11
y
20
+ 21y
19
+ ··· 26y + 1
4
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.673179 + 0.716265I
a = 0.148792 + 0.308519I
b = 1.076780 0.752726I
5.39578 0.84915I 7.95749 + 2.97696I
u = 0.673179 0.716265I
a = 0.148792 0.308519I
b = 1.076780 + 0.752726I
5.39578 + 0.84915I 7.95749 2.97696I
u = 0.457611 + 1.029390I
a = 0.041132 0.464695I
b = 0.689086 + 0.818580I
1.13732 2.28200I 3.79248 + 2.52259I
u = 0.457611 1.029390I
a = 0.041132 + 0.464695I
b = 0.689086 0.818580I
1.13732 + 2.28200I 3.79248 2.52259I
u = 1.057230 + 0.616811I
a = 0.48847 + 1.97668I
b = 0.754597 0.948291I
4.17399 4.33843I 5.43818 + 4.87758I
u = 1.057230 0.616811I
a = 0.48847 1.97668I
b = 0.754597 + 0.948291I
4.17399 + 4.33843I 5.43818 4.87758I
u = 0.114291 + 0.713759I
a = 0.381764 0.379380I
b = 0.345961 + 0.369550I
0.507859 1.098400I 5.66835 + 6.51867I
u = 0.114291 0.713759I
a = 0.381764 + 0.379380I
b = 0.345961 0.369550I
0.507859 + 1.098400I 5.66835 6.51867I
u = 0.686172 + 1.114670I
a = 0.149939 + 0.505520I
b = 0.738092 1.033620I
3.56378 + 7.37420I 5.16607 5.93843I
u = 0.686172 1.114670I
a = 0.149939 0.505520I
b = 0.738092 + 1.033620I
3.56378 7.37420I 5.16607 + 5.93843I
5
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 1.20041 + 0.74865I
a = 0.52942 1.65229I
b = 0.681127 + 1.119630I
1.09912 + 8.73296I 0.91420 6.11492I
u = 1.20041 0.74865I
a = 0.52942 + 1.65229I
b = 0.681127 1.119630I
1.09912 8.73296I 0.91420 + 6.11492I
u = 1.15925 + 0.84659I
a = 0.67085 + 1.58475I
b = 0.74872 1.20984I
2.0375 14.4341I 3.68264 + 8.80511I
u = 1.15925 0.84659I
a = 0.67085 1.58475I
b = 0.74872 + 1.20984I
2.0375 + 14.4341I 3.68264 8.80511I
u = 1.44359 + 0.25308I
a = 0.295484 1.320210I
b = 0.242677 + 0.771774I
5.28190 1.85243I 3.45872 2.75624I
u = 1.44359 0.25308I
a = 0.295484 + 1.320210I
b = 0.242677 0.771774I
5.28190 + 1.85243I 3.45872 + 2.75624I
u = 0.527412
a = 2.13544
b = 0.362131
2.14785 2.01910
u = 1.47329 + 0.10154I
a = 0.14365 1.48101I
b = 0.346734 + 0.845969I
5.55307 + 4.39884I 1.65086 8.29154I
u = 1.47329 0.10154I
a = 0.14365 + 1.48101I
b = 0.346734 0.845969I
5.55307 4.39884I 1.65086 + 8.29154I
u = 0.477398
a = 0.0950270
b = 1.21001
2.89220 7.72710
6
II. I
u
2
= hu
2
a + b + 1, 2u
10
a 6u
11
+ · · · + a 2, u
12
u
11
+ · · · u
2
+ 1i
(i) Arc colorings
a
3
=
0
u
a
8
=
1
0
a
9
=
1
u
2
a
4
=
u
u
3
+ u
a
11
=
a
u
2
a 1
a
7
=
2u
10
2u
9
2u
8
+ 4u
7
+ 6u
6
8u
5
4u
4
+ u
2
a + 8u
3
+ 3u
2
a 6u
u
4
a + u
4
u
2
+ 1
a
6
=
2u
10
2u
9
2u
8
+ 4u
7
+ 6u
6
8u
5
4u
4
+ 8u
3
+ 4u
2
a 6u 1
1
a
10
=
u
2
a + a 1
u
2
a 1
a
1
=
u
6
u
4
+ 2u
2
1
u
6
+ u
2
a
2
=
u
10
+ u
8
2u
6
+ u
4
+ u
2
1
u
11
u
10
2u
9
+ u
8
+ 4u
7
2u
6
4u
5
+ u
4
+ 3u
3
+ u
2
1
a
5
=
u
4
u
2
+ 1
u
4
a
5
=
u
4
u
2
+ 1
u
4
(ii) Obstruction class = 1
(iii) Cusp Shapes
= 4u
11
+ 8u
9
4u
8
16u
7
+ 4u
6
+ 20u
5
8u
4
12u
3
+ 4u
2
+ 8u 2
7
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
4
(u
12
u
11
+ ··· 2u + 1)
2
c
2
(u
12
+ 7u
11
+ ··· + 2u + 1)
2
c
3
, c
8
(u
12
+ u
11
u
10
2u
9
+ 3u
8
+ 4u
7
2u
6
4u
5
+ 2u
4
+ 3u
3
u
2
+ 1)
2
c
5
, c
6
, c
7
c
9
, c
10
u
24
3u
23
+ ··· 52u + 17
c
11
u
24
11u
23
+ ··· 1784u + 289
8
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
4
(y
12
7y
11
+ ··· 2y + 1)
2
c
2
(y
12
3y
11
+ ··· + 6y + 1)
2
c
3
, c
8
(y
12
3y
11
+ ··· 2y + 1)
2
c
5
, c
6
, c
7
c
9
, c
10
y
24
+ 11y
23
+ ··· + 1784y + 289
c
11
y
24
+ 3y
23
+ ··· + 158184y + 83521
9
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
2
1(vol +
1CS) Cusp shape
u = 0.915752 + 0.387588I
a = 0.719269 + 0.265989I
b = 0.693689 0.693688I
3.36661 4.24921I 1.82351 + 6.98310I
u = 0.915752 + 0.387588I
a = 0.31123 1.71799I
b = 0.005311 + 1.403560I
3.36661 4.24921I 1.82351 + 6.98310I
u = 0.915752 0.387588I
a = 0.719269 0.265989I
b = 0.693689 + 0.693688I
3.36661 + 4.24921I 1.82351 6.98310I
u = 0.915752 0.387588I
a = 0.31123 + 1.71799I
b = 0.005311 1.403560I
3.36661 + 4.24921I 1.82351 6.98310I
u = 0.825437 + 0.157146I
a = 1.25892 1.03181I
b = 0.441009 + 1.004140I
4.72717 + 0.35310I 2.66692 0.62981I
u = 0.825437 + 0.157146I
a = 0.37562 + 2.07265I
b = 0.215643 1.263560I
4.72717 + 0.35310I 2.66692 0.62981I
u = 0.825437 0.157146I
a = 1.25892 + 1.03181I
b = 0.441009 1.004140I
4.72717 0.35310I 2.66692 + 0.62981I
u = 0.825437 0.157146I
a = 0.37562 2.07265I
b = 0.215643 + 1.263560I
4.72717 0.35310I 2.66692 + 0.62981I
u = 0.895445 + 0.803537I
a = 0.520071 1.227910I
b = 0.685814 + 0.940144I
0.75031 3.01307I 3.36825 + 2.63251I
u = 0.895445 + 0.803537I
a = 0.330877 0.145723I
b = 0.841964 + 0.498902I
0.75031 3.01307I 3.36825 + 2.63251I
10
Solutions to I
u
2
1(vol +
1CS) Cusp shape
u = 0.895445 0.803537I
a = 0.520071 + 1.227910I
b = 0.685814 0.940144I
0.75031 + 3.01307I 3.36825 2.63251I
u = 0.895445 0.803537I
a = 0.330877 + 0.145723I
b = 0.841964 0.498902I
0.75031 + 3.01307I 3.36825 2.63251I
u = 0.849698 + 0.874392I
a = 0.495565 + 1.219030I
b = 0.832505 0.684481I
4.62532 1.48234I 7.15258 + 0.67542I
u = 0.849698 + 0.874392I
a = 0.542966 + 0.125815I
b = 0.789930 0.801459I
4.62532 1.48234I 7.15258 + 0.67542I
u = 0.849698 0.874392I
a = 0.495565 1.219030I
b = 0.832505 + 0.684481I
4.62532 + 1.48234I 7.15258 0.67542I
u = 0.849698 0.874392I
a = 0.542966 0.125815I
b = 0.789930 + 0.801459I
4.62532 + 1.48234I 7.15258 0.67542I
u = 0.962887 + 0.828850I
a = 0.498094 + 1.238190I
b = 0.856755 1.092410I
4.26829 + 7.80134I 6.36611 5.63981I
u = 0.962887 + 0.828850I
a = 0.317556 0.012937I
b = 1.096910 0.503770I
4.26829 + 7.80134I 6.36611 5.63981I
u = 0.962887 0.828850I
a = 0.498094 1.238190I
b = 0.856755 + 1.092410I
4.26829 7.80134I 6.36611 + 5.63981I
u = 0.962887 0.828850I
a = 0.317556 + 0.012937I
b = 1.096910 + 0.503770I
4.26829 7.80134I 6.36611 + 5.63981I
11
Solutions to I
u
2
1(vol +
1CS) Cusp shape
u = 0.326826 + 0.552791I
a = 0.32038 3.37299I
b = 0.155092 0.786191I
1.55013 + 0.71593I 7.95647 0.64874I
u = 0.326826 + 0.552791I
a = 3.65784 0.87628I
b = 0.043670 + 1.147520I
1.55013 + 0.71593I 7.95647 0.64874I
u = 0.326826 0.552791I
a = 0.32038 + 3.37299I
b = 0.155092 + 0.786191I
1.55013 0.71593I 7.95647 + 0.64874I
u = 0.326826 0.552791I
a = 3.65784 + 0.87628I
b = 0.043670 1.147520I
1.55013 0.71593I 7.95647 + 0.64874I
12
III.
I
u
3
= h−u
5
+ 2u
3
+ b u, u
4
+ 2u
3
+ 3u
2
+ a 3u 2, u
6
3u
4
+ 2u
2
+ 1i
(i) Arc colorings
a
3
=
0
u
a
8
=
1
0
a
9
=
1
u
2
a
4
=
u
u
3
+ u
a
11
=
u
4
2u
3
3u
2
+ 3u + 2
u
5
2u
3
+ u
a
7
=
u
5
+ u
4
+ 4u
3
3u
2
4u + 2
1
a
6
=
u
4
+ 2u
3
3u
2
3u + 2
u
5
+ u
3
+ u + 1
a
10
=
u
5
+ u
4
4u
3
3u
2
+ 4u + 2
u
5
2u
3
+ u
a
1
=
u
5
+ 2u
3
u
0
a
2
=
u
u
a
5
=
u
5
2u
3
+ u
u
5
+ u
3
+ u
a
5
=
u
5
2u
3
+ u
u
5
+ u
3
+ u
(ii) Obstruction class = 1
(iii) Cusp Shapes = 4u
4
+ 8u
2
13
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
(u
3
+ u
2
1)
2
c
2
(u
3
+ u
2
+ 2u + 1)
2
c
3
, c
8
u
6
3u
4
+ 2u
2
+ 1
c
4
(u
3
u
2
+ 1)
2
c
5
, c
6
, c
7
c
9
, c
10
(u
2
+ 1)
3
c
11
(u 1)
6
14
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
4
(y
3
y
2
+ 2y 1)
2
c
2
(y
3
+ 3y
2
+ 2y 1)
2
c
3
, c
8
(y
3
3y
2
+ 2y + 1)
2
c
5
, c
6
, c
7
c
9
, c
10
(y + 1)
6
c
11
(y 1)
6
15
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
3
1(vol +
1CS) Cusp shape
u = 1.307140 + 0.215080I
a = 0.72238 1.35722I
b = 1.000000I
6.31400 + 2.82812I 3.50976 2.97945I
u = 1.307140 0.215080I
a = 0.72238 + 1.35722I
b = 1.000000I
6.31400 2.82812I 3.50976 + 2.97945I
u = 1.307140 + 0.215080I
a = 0.35722 1.72238I
b = 1.000000I
6.31400 2.82812I 3.50976 + 2.97945I
u = 1.307140 0.215080I
a = 0.35722 + 1.72238I
b = 1.000000I
6.31400 + 2.82812I 3.50976 2.97945I
u = 0.569840I
a = 3.07960 + 2.07960I
b = 1.000000I
2.17641 3.01950
u = 0.569840I
a = 3.07960 2.07960I
b = 1.000000I
2.17641 3.01950
16
IV. I
v
1
= ha, b 1, 2v + 1i
(i) Arc colorings
a
3
=
0.5
0
a
8
=
1
0
a
9
=
1
0
a
4
=
0.5
0
a
11
=
0
1
a
7
=
1
1
a
6
=
0
1
a
10
=
1
1
a
1
=
1
2
a
2
=
0.5
2
a
5
=
1
2
a
5
=
1
2
(ii) Obstruction class = 1
(iii) Cusp Shapes = 14.25
17
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
5
, c
6
c
7
u 1
c
2
, c
4
, c
9
c
10
, c
11
u + 1
c
3
, c
8
u
18
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
2
, c
4
c
5
, c
6
, c
7
c
9
, c
10
, c
11
y 1
c
3
, c
8
y
19
(vi) Complex Volumes and Cusp Shapes
Solutions to I
v
1
1(vol +
1CS) Cusp shape
v = 0.500000
a = 0
b = 1.00000
3.28987 14.2500
20
V. u-Polynomials
Crossings u-Polynomials at each crossing
c
1
(u 1)(u
3
+ u
2
1)
2
(u
12
u
11
+ ··· 2u + 1)
2
· (u
20
2u
19
+ ··· 3u 4)
c
2
(u + 1)(u
3
+ u
2
+ 2u + 1)
2
(u
12
+ 7u
11
+ ··· + 2u + 1)
2
· (u
20
+ 10u
19
+ ··· + 65u + 16)
c
3
, c
8
u(u
6
3u
4
+ 2u
2
+ 1)
· (u
12
+ u
11
u
10
2u
9
+ 3u
8
+ 4u
7
2u
6
4u
5
+ 2u
4
+ 3u
3
u
2
+ 1)
2
· (u
20
3u
19
+ ··· + 6u + 8)
c
4
(u + 1)(u
3
u
2
+ 1)
2
(u
12
u
11
+ ··· 2u + 1)
2
· (u
20
2u
19
+ ··· 3u 4)
c
5
, c
6
, c
7
(u 1)(u
2
+ 1)
3
(u
20
+ u
19
+ ··· + u
2
1)(u
24
3u
23
+ ··· 52u + 17)
c
9
, c
10
(u + 1)(u
2
+ 1)
3
(u
20
+ u
19
+ ··· + u
2
1)(u
24
3u
23
+ ··· 52u + 17)
c
11
((u 1)
6
)(u + 1)(u
20
5u
19
+ ··· + 2u + 1)
· (u
24
11u
23
+ ··· 1784u + 289)
21
VI. Riley Polynomials
Crossings Riley Polynomials at each crossing
c
1
, c
4
(y 1)(y
3
y
2
+ 2y 1)
2
(y
12
7y
11
+ ··· 2y + 1)
2
· (y
20
10y
19
+ ··· 65y + 16)
c
2
(y 1)(y
3
+ 3y
2
+ 2y 1)
2
(y
12
3y
11
+ ··· + 6y + 1)
2
· (y
20
+ 2y
19
+ ··· + 3935y + 256)
c
3
, c
8
y(y
3
3y
2
+ 2y + 1)
2
(y
12
3y
11
+ ··· 2y + 1)
2
· (y
20
9y
19
+ ··· 372y + 64)
c
5
, c
6
, c
7
c
9
, c
10
(y 1)(y + 1)
6
(y
20
+ 5y
19
+ ··· 2y + 1)
· (y
24
+ 11y
23
+ ··· + 1784y + 289)
c
11
((y 1)
7
)(y
20
+ 21y
19
+ ··· 26y + 1)
· (y
24
+ 3y
23
+ ··· + 158184y + 83521)
22