11n
68
(K11n
68
)
A knot diagram
1
Linearized knot diagam
4 1 7 2 9 11 4 6 5 7 10
Solving Sequence
6,11 4,7
8 9 3 5 10 1 2
c
6
c
7
c
8
c
3
c
5
c
10
c
11
c
2
c
1
, c
4
, c
9
Ideals for irreducible components
2
of X
par
I
u
1
= h77815u
25
80433u
24
+ ··· + 101496b + 29131,
2049367u
25
+ 17170719u
24
+ ··· + 12687000a + 47575387, u
26
2u
25
+ ··· 2u + 1i
I
u
2
= h−u
3
+ 2b + u + 1, u
3
2u
2
+ 2a 3u 1, u
4
+ u
3
+ u
2
+ 1i
I
u
3
= hu
8
u
7
+ 2u
6
u
4
+ u
3
u
2
+ b u, u
7
+ u
6
+ 2u
5
+ 4u
4
+ 3u
3
+ 3u
2
+ a + 3u + 1,
u
9
+ 3u
7
+ 3u
6
+ 3u
5
+ 6u
4
+ 3u
3
+ 3u
2
+ 2u 1i
* 3 irreducible components of dim
C
= 0, with total 39 representations.
1
The image of knot diagram is generated by the software Draw programme developed by An-
drew Bartholomew(http://www.layer8.co.uk/maths/draw/index.htm#Running-draw), where we modi-
fied some parts for our purpose(https://github.com/CATsTAILs/LinksPainter).
2
All coefficients of polynomials are rational numbers. But the coefficients are sometimes approximated
in decimal forms when there is not enough margin.
1
I. I
u
1
= h77815u
25
80433u
24
+ · · · + 101496b + 29131, 2.05 × 10
6
u
25
+
1.72 × 10
7
u
24
+ · · · + 1.27 × 10
7
a + 4.76 × 10
7
, u
26
2u
25
+ · · · 2u + 1i
(i) Arc colorings
a
6
=
1
0
a
11
=
0
u
a
4
=
0.161533u
25
1.35341u
24
+ ··· + 4.59237u 3.74993
0.766680u
25
+ 0.792475u
24
+ ··· 0.209299u 0.287016
a
7
=
1
u
2
a
8
=
4.34995u
25
+ 8.30824u
24
+ ··· 11.2562u + 4.44452
0.111927u
25
+ 1.17301u
24
+ ··· 2.00774u + 1.43931
a
9
=
4.23802u
25
+ 9.48125u
24
+ ··· 13.2639u + 5.88383
0.111927u
25
+ 1.17301u
24
+ ··· 2.00774u + 1.43931
a
3
=
0.236517u
25
2.54906u
24
+ ··· + 7.57449u 5.71342
1.07634u
25
+ 1.55091u
24
+ ··· 1.40645u + 0.112537
a
5
=
2.44452u
25
+ 1.53910u
24
+ ··· + 0.243519u 3.36715
1.39686u
25
+ 1.36224u
24
+ ··· 1.66316u 0.888073
a
10
=
u
u
3
+ u
a
1
=
u
3
u
5
+ u
3
+ u
a
2
=
0.889032u
25
0.919202u
24
+ ··· + 5.34807u 4.99096
1.17523u
25
+ 0.972343u
24
+ ··· + 0.156712u 0.961125
a
2
=
0.889032u
25
0.919202u
24
+ ··· + 5.34807u 4.99096
1.17523u
25
+ 0.972343u
24
+ ··· + 0.156712u 0.961125
(ii) Obstruction class = 1
(iii) Cusp Shapes =
48418177
8458000
u
25
+
48940111
8458000
u
24
+ ···
705789
8458000
u
61013797
8458000
2
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
4
u
26
2u
25
+ ··· 35u + 4
c
2
u
26
+ 10u
25
+ ··· + 481u + 16
c
3
, c
7
u
26
2u
25
+ ··· 112u + 64
c
5
, c
8
, c
9
u
26
+ 2u
25
+ ··· + 2u + 1
c
6
, c
10
u
26
+ 2u
25
+ ··· + 2u + 1
c
11
u
26
14u
25
+ ··· 4u + 1
3
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
4
y
26
10y
25
+ ··· 481y + 16
c
2
y
26
+ 14y
25
+ ··· 80993y + 256
c
3
, c
7
y
26
+ 18y
25
+ ··· + 70400y + 4096
c
5
, c
8
, c
9
y
26
+ 22y
25
+ ··· + 4y + 1
c
6
, c
10
y
26
+ 14y
25
+ ··· + 4y + 1
c
11
y
26
2y
25
+ ··· + 20y + 1
4
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 1.011190 + 0.136706I
a = 0.035883 + 0.146636I
b = 0.62158 + 1.42798I
1.86313 + 7.71246I 6.86228 5.25734I
u = 1.011190 0.136706I
a = 0.035883 0.146636I
b = 0.62158 1.42798I
1.86313 7.71246I 6.86228 + 5.25734I
u = 0.370532 + 0.998437I
a = 1.109240 0.521057I
b = 0.369770 0.293138I
2.47557 + 4.95345I 6.39722 7.47760I
u = 0.370532 0.998437I
a = 1.109240 + 0.521057I
b = 0.369770 + 0.293138I
2.47557 4.95345I 6.39722 + 7.47760I
u = 0.269068 + 1.038770I
a = 0.127266 0.719999I
b = 0.463650 + 0.532995I
1.31071 2.42285I 0.84038 + 4.76679I
u = 0.269068 1.038770I
a = 0.127266 + 0.719999I
b = 0.463650 0.532995I
1.31071 + 2.42285I 0.84038 4.76679I
u = 0.132101 + 0.846386I
a = 0.69055 + 2.07222I
b = 1.30633 0.71384I
0.911584 + 0.890121I 0.87423 + 1.36491I
u = 0.132101 0.846386I
a = 0.69055 2.07222I
b = 1.30633 + 0.71384I
0.911584 0.890121I 0.87423 1.36491I
u = 0.330433 + 0.724477I
a = 0.95370 + 2.08665I
b = 1.142600 + 0.109328I
5.04252 1.61304I 10.18355 + 3.58696I
u = 0.330433 0.724477I
a = 0.95370 2.08665I
b = 1.142600 0.109328I
5.04252 + 1.61304I 10.18355 3.58696I
5
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.774839 + 0.143637I
a = 0.175331 0.241236I
b = 0.487210 + 1.045470I
0.05851 2.13854I 4.58802 + 1.91237I
u = 0.774839 0.143637I
a = 0.175331 + 0.241236I
b = 0.487210 1.045470I
0.05851 + 2.13854I 4.58802 1.91237I
u = 0.419572 + 0.612728I
a = 0.290716 0.333902I
b = 0.237389 + 0.425546I
0.10620 1.46904I 0.77851 + 4.66825I
u = 0.419572 0.612728I
a = 0.290716 + 0.333902I
b = 0.237389 0.425546I
0.10620 + 1.46904I 0.77851 4.66825I
u = 0.914066 + 0.917616I
a = 0.250251 + 0.130322I
b = 0.155646 + 0.140338I
7.98517 + 3.33888I 1.72089 5.46783I
u = 0.914066 0.917616I
a = 0.250251 0.130322I
b = 0.155646 0.140338I
7.98517 3.33888I 1.72089 + 5.46783I
u = 0.402493 + 1.239940I
a = 0.37826 1.94903I
b = 0.80677 + 1.32805I
4.09462 6.26991I 1.96309 + 5.01662I
u = 0.402493 1.239940I
a = 0.37826 + 1.94903I
b = 0.80677 1.32805I
4.09462 + 6.26991I 1.96309 5.01662I
u = 0.387462 + 1.292200I
a = 0.67996 1.61333I
b = 0.42179 + 1.55871I
7.58035 + 1.64459I 1.58550 0.59315I
u = 0.387462 1.292200I
a = 0.67996 + 1.61333I
b = 0.42179 1.55871I
7.58035 1.64459I 1.58550 + 0.59315I
6
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.553190 + 1.252930I
a = 0.89905 + 1.50339I
b = 0.43042 1.66549I
6.35723 + 8.21738I 0.54202 5.78684I
u = 0.553190 1.252930I
a = 0.89905 1.50339I
b = 0.43042 + 1.66549I
6.35723 8.21738I 0.54202 + 5.78684I
u = 0.560294 + 1.283400I
a = 0.58734 + 1.77218I
b = 0.96323 1.71069I
1.68898 13.33640I 4.27120 + 7.69267I
u = 0.560294 1.283400I
a = 0.58734 1.77218I
b = 0.96323 + 1.71069I
1.68898 + 13.33640I 4.27120 7.69267I
u = 0.410537 + 0.270705I
a = 0.73153 + 2.35210I
b = 0.430697 + 0.672525I
4.35117 1.59149I 10.56012 + 0.81365I
u = 0.410537 0.270705I
a = 0.73153 2.35210I
b = 0.430697 0.672525I
4.35117 + 1.59149I 10.56012 0.81365I
7
II. I
u
2
= h−u
3
+ 2b + u + 1, u
3
2u
2
+ 2a 3u 1, u
4
+ u
3
+ u
2
+ 1i
(i) Arc colorings
a
6
=
1
0
a
11
=
0
u
a
4
=
1
2
u
3
+ u
2
+
3
2
u +
1
2
1
2
u
3
1
2
u
1
2
a
7
=
1
u
2
a
8
=
1
u
2
a
9
=
u
2
+ 1
u
2
a
3
=
1
2
u
3
+ u
2
+
3
2
u +
1
2
1
2
u
3
1
2
u
1
2
a
5
=
u
3
u
3
u
2
1
a
10
=
u
u
3
+ u
a
1
=
u
3
u
3
+ u
2
+ 1
a
2
=
3
2
u
3
+ u
2
+
3
2
u +
1
2
3
2
u
3
+ u
2
1
2
u +
1
2
a
2
=
3
2
u
3
+ u
2
+
3
2
u +
1
2
3
2
u
3
+ u
2
1
2
u +
1
2
(ii) Obstruction class = 1
(iii) Cusp Shapes =
1
4
u
3
+
7
2
u
2
+
23
4
u
37
4
8
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
(u 1)
4
c
2
, c
4
(u + 1)
4
c
3
, c
7
u
4
c
5
u
4
+ u
3
+ 3u
2
+ 2u + 1
c
6
u
4
+ u
3
+ u
2
+ 1
c
8
, c
9
, c
11
u
4
u
3
+ 3u
2
2u + 1
c
10
u
4
u
3
+ u
2
+ 1
9
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
2
, c
4
(y 1)
4
c
3
, c
7
y
4
c
5
, c
8
, c
9
c
11
y
4
+ 5y
3
+ 7y
2
+ 2y + 1
c
6
, c
10
y
4
+ y
3
+ 3y
2
+ 2y + 1
10
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
2
1(vol +
1CS) Cusp shape
u = 0.351808 + 0.720342I
a = 0.38053 + 1.53420I
b = 0.927958 0.413327I
1.43393 1.41510I 8.73606 + 5.88934I
u = 0.351808 0.720342I
a = 0.38053 1.53420I
b = 0.927958 + 0.413327I
1.43393 + 1.41510I 8.73606 5.88934I
u = 0.851808 + 0.911292I
a = 0.130534 + 0.427872I
b = 0.677958 + 0.157780I
8.43568 + 3.16396I 14.13894 + 0.11292I
u = 0.851808 0.911292I
a = 0.130534 0.427872I
b = 0.677958 0.157780I
8.43568 3.16396I 14.13894 0.11292I
11
III. I
u
3
= hu
8
u
7
+ 2u
6
u
4
+ u
3
u
2
+ b u, u
7
+ u
6
+ 2u
5
+ 4u
4
+ 3u
3
+
3u
2
+ a + 3u + 1, u
9
+ 3u
7
+ · · · + 2u 1i
(i) Arc colorings
a
6
=
1
0
a
11
=
0
u
a
4
=
u
7
u
6
2u
5
4u
4
3u
3
3u
2
3u 1
u
8
+ u
7
2u
6
+ u
4
u
3
+ u
2
+ u
a
7
=
1
u
2
a
8
=
u
u
a
9
=
0
u
a
3
=
u
7
2u
6
2u
5
6u
4
4u
3
4u
2
4u
2u
8
+ u
7
4u
6
u
5
2u
3
+ 2u
2
+ u
a
5
=
1
u
2
a
10
=
u
u
3
+ u
a
1
=
u
3
u
5
+ u
3
+ u
a
2
=
u
4
u
2
2u 1
u
4
+ 2u
a
2
=
u
4
u
2
2u 1
u
4
+ 2u
(ii) Obstruction class = 1
(iii) Cusp Shapes = 4u
6
8u
4
8u
3
4u
2
8u 6
12
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
4
(u
3
u
2
+ 1)
3
c
2
, c
3
, c
7
(u
3
+ u
2
+ 2u + 1)
3
c
5
, c
6
, c
8
c
9
, c
10
u
9
+ 3u
7
3u
6
+ 3u
5
6u
4
+ 3u
3
3u
2
+ 2u + 1
c
11
u
9
6u
8
+ 15u
7
15u
6
5u
5
+ 24u
4
9u
3
15u
2
+ 10u + 1
13
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
4
(y
3
y
2
+ 2y 1)
3
c
2
, c
3
, c
7
(y
3
+ 3y
2
+ 2y 1)
3
c
5
, c
6
, c
8
c
9
, c
10
y
9
+ 6y
8
+ 15y
7
+ 15y
6
5y
5
24y
4
9y
3
+ 15y
2
+ 10y 1
c
11
y
9
6y
8
+ ··· + 130y 1
14
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
3
1(vol +
1CS) Cusp shape
u = 0.149100 + 1.032810I
a = 1.49322 1.81245I
b = 1.57125 + 2.35293I
1.11345 9.01951 + 0.I
u = 0.149100 1.032810I
a = 1.49322 + 1.81245I
b = 1.57125 2.35293I
1.11345 9.01951 + 0.I
u = 0.929255 + 0.157692I
a = 0.1261290 + 0.0333681I
b = 0.119081 + 1.372090I
3.02413 2.82812I 2.49024 + 2.97945I
u = 0.929255 0.157692I
a = 0.1261290 0.0333681I
b = 0.119081 1.372090I
3.02413 + 2.82812I 2.49024 2.97945I
u = 0.550542 + 1.200360I
a = 1.08414 + 1.00782I
b = 0.116542 1.272430I
3.02413 2.82812I 2.49024 + 2.97945I
u = 0.550542 1.200360I
a = 1.08414 1.00782I
b = 0.116542 + 1.272430I
3.02413 + 2.82812I 2.49024 2.97945I
u = 0.378713 + 1.358050I
a = 0.84258 1.19340I
b = 0.00950 + 1.58939I
3.02413 + 2.82812I 2.49024 2.97945I
u = 0.378713 1.358050I
a = 0.84258 + 1.19340I
b = 0.00950 1.58939I
3.02413 2.82812I 2.49024 + 2.97945I
u = 0.298201
a = 2.27818
b = 0.367256
1.11345 9.01950
15
IV. u-Polynomials
Crossings u-Polynomials at each crossing
c
1
((u 1)
4
)(u
3
u
2
+ 1)
3
(u
26
2u
25
+ ··· 35u + 4)
c
2
((u + 1)
4
)(u
3
+ u
2
+ 2u + 1)
3
(u
26
+ 10u
25
+ ··· + 481u + 16)
c
3
, c
7
u
4
(u
3
+ u
2
+ 2u + 1)
3
(u
26
2u
25
+ ··· 112u + 64)
c
4
((u + 1)
4
)(u
3
u
2
+ 1)
3
(u
26
2u
25
+ ··· 35u + 4)
c
5
(u
4
+ u
3
+ 3u
2
+ 2u + 1)
· (u
9
+ 3u
7
3u
6
+ 3u
5
6u
4
+ 3u
3
3u
2
+ 2u + 1)
· (u
26
+ 2u
25
+ ··· + 2u + 1)
c
6
(u
4
+ u
3
+ u
2
+ 1)(u
9
+ 3u
7
3u
6
+ 3u
5
6u
4
+ 3u
3
3u
2
+ 2u + 1)
· (u
26
+ 2u
25
+ ··· + 2u + 1)
c
8
, c
9
(u
4
u
3
+ 3u
2
2u + 1)
· (u
9
+ 3u
7
3u
6
+ 3u
5
6u
4
+ 3u
3
3u
2
+ 2u + 1)
· (u
26
+ 2u
25
+ ··· + 2u + 1)
c
10
(u
4
u
3
+ u
2
+ 1)(u
9
+ 3u
7
3u
6
+ 3u
5
6u
4
+ 3u
3
3u
2
+ 2u + 1)
· (u
26
+ 2u
25
+ ··· + 2u + 1)
c
11
(u
4
u
3
+ 3u
2
2u + 1)
· (u
9
6u
8
+ 15u
7
15u
6
5u
5
+ 24u
4
9u
3
15u
2
+ 10u + 1)
· (u
26
14u
25
+ ··· 4u + 1)
16
V. Riley Polynomials
Crossings Riley Polynomials at each crossing
c
1
, c
4
((y 1)
4
)(y
3
y
2
+ 2y 1)
3
(y
26
10y
25
+ ··· 481y + 16)
c
2
((y 1)
4
)(y
3
+ 3y
2
+ 2y 1)
3
(y
26
+ 14y
25
+ ··· 80993y + 256)
c
3
, c
7
y
4
(y
3
+ 3y
2
+ 2y 1)
3
(y
26
+ 18y
25
+ ··· + 70400y + 4096)
c
5
, c
8
, c
9
(y
4
+ 5y
3
+ 7y
2
+ 2y + 1)
· (y
9
+ 6y
8
+ 15y
7
+ 15y
6
5y
5
24y
4
9y
3
+ 15y
2
+ 10y 1)
· (y
26
+ 22y
25
+ ··· + 4y + 1)
c
6
, c
10
(y
4
+ y
3
+ 3y
2
+ 2y + 1)
· (y
9
+ 6y
8
+ 15y
7
+ 15y
6
5y
5
24y
4
9y
3
+ 15y
2
+ 10y 1)
· (y
26
+ 14y
25
+ ··· + 4y + 1)
c
11
(y
4
+ 5y
3
+ 7y
2
+ 2y + 1)(y
9
6y
8
+ ··· + 130y 1)
· (y
26
2y
25
+ ··· + 20y + 1)
17