11n
69
(K11n
69
)
A knot diagram
1
Linearized knot diagam
4 1 8 2 10 9 11 4 6 1 7
Solving Sequence
7,11 4,8
9 1 3 2 5 6 10
c
7
c
8
c
11
c
3
c
2
c
4
c
6
c
10
c
1
, c
5
, c
9
Ideals for irreducible components
2
of X
par
I
u
1
= h3951u
19
+ 6529u
18
+ ··· + 2424b + 6325, 115811u
19
169485u
18
+ ··· + 79992a 272713,
u
20
+ 2u
19
+ ··· + 2u + 1i
I
u
2
= hu
3
+ 2b u + 1, u
3
+ 2u
2
+ 2a 3u + 1, u
4
u
3
+ u
2
+ 1i
I
u
3
= hu
5
+ u
4
+ u
3
u
2
+ b 2u, u
4
u
3
+ u
2
+ a 3u + 2, u
6
+ 2u
4
3u
3
+ u
2
3u + 1i
* 3 irreducible components of dim
C
= 0, with total 30 representations.
1
The image of knot diagram is generated by the software Draw programme developed by An-
drew Bartholomew(http://www.layer8.co.uk/maths/draw/index.htm#Running-draw), where we modi-
fied some parts for our purpose(https://github.com/CATsTAILs/LinksPainter).
2
All coefficients of polynomials are rational numbers. But the coefficients are sometimes approximated
in decimal forms when there is not enough margin.
1
I. I
u
1
= h3951u
19
+ 6529u
18
+ · · · + 2424b + 6325, 1.16 × 10
5
u
19
1.69 ×
10
5
u
18
+ · · · + 8.00 × 10
4
a 2.73 × 10
5
, u
20
+ 2u
19
+ · · · + 2u + 1i
(i) Arc colorings
a
7
=
1
0
a
11
=
0
u
a
4
=
1.44778u
19
+ 2.11877u
18
+ ··· + 7.14120u + 3.40925
1.62995u
19
2.69348u
18
+ ··· + 1.21988u 2.60932
a
8
=
1
u
2
a
9
=
0.490249u
19
0.377738u
18
+ ··· + 1.43684u 0.710171
2.45375u
19
+ 3.57816u
18
+ ··· + 2.48335u + 4.64226
a
1
=
u
u
a
3
=
0.315419u
19
+ 0.424955u
18
+ ··· + 8.46688u + 1.57672
1.38148u
19
2.28739u
18
+ ··· + 1.22934u 2.03842
a
2
=
0.349372u
19
0.474610u
18
+ ··· + 8.80089u + 0.895277
2.04627u
19
3.18696u
18
+ ··· + 1.56334u 2.71986
a
5
=
3.68497u
19
+ 5.12691u
18
+ ··· 2.11341u + 4.48245
0.354535u
19
0.633363u
18
+ ··· 0.327633u 1.82848
a
6
=
4.03950u
19
5.76028u
18
+ ··· + 1.78578u 5.31093
1.32933u
19
1.83018u
18
+ ··· 0.265227u 1.45375
a
10
=
u
3
u
3
+ u
a
10
=
u
3
u
3
+ u
(ii) Obstruction class = 1
(iii) Cusp Shapes =
189289
17776
u
19
+
857557
53328
u
18
+ ··· +
286735
53328
u +
706201
53328
2
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
4
u
20
2u
19
+ ··· 35u + 4
c
2
u
20
+ 22u
19
+ ··· + 353u + 16
c
3
, c
8
u
20
+ 2u
19
+ ··· + 112u + 64
c
5
, c
6
, c
9
u
20
2u
19
+ ··· 2u + 1
c
7
, c
11
u
20
2u
19
+ ··· 2u + 1
c
10
u
20
+ 14u
19
+ ··· + 4u + 1
3
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
4
y
20
22y
19
+ ··· 353y + 16
c
2
y
20
46y
19
+ ··· + 223775y + 256
c
3
, c
8
y
20
18y
19
+ ··· + 45824y + 4096
c
5
, c
6
, c
9
y
20
+ 14y
19
+ ··· + 4y + 1
c
7
, c
11
y
20
+ 14y
19
+ ··· + 4y + 1
c
10
y
20
14y
19
+ ··· + 56y + 1
4
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 1.131630 + 0.044257I
a = 0.0439473 + 0.1087160I
b = 1.40407 + 0.37862I
4.62345 6.11364I 7.31633 + 3.70196I
u = 1.131630 0.044257I
a = 0.0439473 0.1087160I
b = 1.40407 0.37862I
4.62345 + 6.11364I 7.31633 3.70196I
u = 0.280810 + 0.786452I
a = 0.395074 + 0.246972I
b = 0.197007 + 0.388860I
0.440396 1.279690I 4.66436 + 4.97948I
u = 0.280810 0.786452I
a = 0.395074 0.246972I
b = 0.197007 0.388860I
0.440396 + 1.279690I 4.66436 4.97948I
u = 0.769131 + 0.907087I
a = 0.304381 0.204058I
b = 0.165796 + 0.163987I
5.68828 + 2.93127I 2.45037 0.45578I
u = 0.769131 0.907087I
a = 0.304381 + 0.204058I
b = 0.165796 0.163987I
5.68828 2.93127I 2.45037 + 0.45578I
u = 0.167664 + 1.190790I
a = 1.75974 + 0.44692I
b = 1.243080 0.457519I
4.30761 + 1.95796I 13.39097 1.55059I
u = 0.167664 1.190790I
a = 1.75974 0.44692I
b = 1.243080 + 0.457519I
4.30761 1.95796I 13.39097 + 1.55059I
u = 0.050177 + 1.253190I
a = 0.722975 + 0.985298I
b = 0.495740 0.417798I
5.41434 + 1.81549I 13.14101 3.54833I
u = 0.050177 1.253190I
a = 0.722975 0.985298I
b = 0.495740 + 0.417798I
5.41434 1.81549I 13.14101 + 3.54833I
5
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.261687 + 1.231270I
a = 2.05611 + 0.13028I
b = 1.122580 0.533009I
2.03730 5.64317I 8.76092 + 6.80873I
u = 0.261687 1.231270I
a = 2.05611 0.13028I
b = 1.122580 + 0.533009I
2.03730 + 5.64317I 8.76092 6.80873I
u = 0.553404 + 0.030516I
a = 0.394310 + 0.673104I
b = 0.895721 0.664676I
1.73140 2.57417I 2.05095 + 4.12677I
u = 0.553404 0.030516I
a = 0.394310 0.673104I
b = 0.895721 + 0.664676I
1.73140 + 2.57417I 2.05095 4.12677I
u = 0.52166 + 1.39992I
a = 1.63987 0.44598I
b = 1.74672 + 0.69883I
9.1950 11.9560I 9.10352 + 6.09824I
u = 0.52166 1.39992I
a = 1.63987 + 0.44598I
b = 1.74672 0.69883I
9.1950 + 11.9560I 9.10352 6.09824I
u = 0.54264 + 1.40344I
a = 1.38809 0.74127I
b = 1.65276 + 0.37354I
13.3225 + 5.9895I 12.03384 3.05262I
u = 0.54264 1.40344I
a = 1.38809 + 0.74127I
b = 1.65276 0.37354I
13.3225 5.9895I 12.03384 + 3.05262I
u = 0.219579 + 0.305083I
a = 0.48733 + 3.67126I
b = 0.894252 + 0.888486I
0.977750 + 0.984957I 3.11347 + 0.07087I
u = 0.219579 0.305083I
a = 0.48733 3.67126I
b = 0.894252 0.888486I
0.977750 0.984957I 3.11347 0.07087I
6
II. I
u
2
= hu
3
+ 2b u + 1, u
3
+ 2u
2
+ 2a 3u + 1, u
4
u
3
+ u
2
+ 1i
(i) Arc colorings
a
7
=
1
0
a
11
=
0
u
a
4
=
1
2
u
3
u
2
+
3
2
u
1
2
1
2
u
3
+
1
2
u
1
2
a
8
=
1
u
2
a
9
=
1
u
2
a
1
=
u
u
a
3
=
1
2
u
3
u
2
+
3
2
u
1
2
1
2
u
3
+
1
2
u
1
2
a
2
=
1
2
u
3
u
2
+
5
2
u
1
2
1
2
u
3
+
3
2
u
1
2
a
5
=
u
u
a
6
=
u
2
+ 1
u
3
+ u
2
+ 1
a
10
=
u
3
u
3
+ u
a
10
=
u
3
u
3
+ u
(ii) Obstruction class = 1
(iii) Cusp Shapes =
1
4
u
3
9
2
u
2
+
9
4
u
53
4
7
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
(u 1)
4
c
2
, c
4
(u + 1)
4
c
3
, c
8
u
4
c
5
, c
6
, c
10
u
4
u
3
+ 3u
2
2u + 1
c
7
u
4
u
3
+ u
2
+ 1
c
9
u
4
+ u
3
+ 3u
2
+ 2u + 1
c
11
u
4
+ u
3
+ u
2
+ 1
8
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
2
, c
4
(y 1)
4
c
3
, c
8
y
4
c
5
, c
6
, c
9
c
10
y
4
+ 5y
3
+ 7y
2
+ 2y + 1
c
7
, c
11
y
4
+ y
3
+ 3y
2
+ 2y + 1
9
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
2
1(vol +
1CS) Cusp shape
u = 0.351808 + 0.720342I
a = 0.38053 + 1.53420I
b = 0.927958 + 0.413327I
1.85594 1.41510I 12.38954 + 3.92814I
u = 0.351808 0.720342I
a = 0.38053 1.53420I
b = 0.927958 0.413327I
1.85594 + 1.41510I 12.38954 3.92814I
u = 0.851808 + 0.911292I
a = 0.130534 + 0.427872I
b = 0.677958 0.157780I
5.14581 + 3.16396I 10.48546 5.24252I
u = 0.851808 0.911292I
a = 0.130534 0.427872I
b = 0.677958 + 0.157780I
5.14581 3.16396I 10.48546 + 5.24252I
10
III. I
u
3
=
hu
5
+u
4
+u
3
u
2
+b2u, u
4
u
3
+u
2
+a3u+2, u
6
+2u
4
3u
3
+u
2
3u+1i
(i) Arc colorings
a
7
=
1
0
a
11
=
0
u
a
4
=
u
4
+ u
3
u
2
+ 3u 2
u
5
u
4
u
3
+ u
2
+ 2u
a
8
=
1
u
2
a
9
=
u
u
a
1
=
u
u
a
3
=
u
4
u
2
+ 2u 1
u
4
+ 2u
a
2
=
2u 1
u
2
+ 2u
a
5
=
u
4
+ u
2
1
u
4
+ 2u
2
a
6
=
u
2
+ 1
u
2
a
10
=
u
3
u
3
+ u
a
10
=
u
3
u
3
+ u
(ii) Obstruction class = 1
(iii) Cusp Shapes = 10
11
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
3
, c
4
c
8
(u
2
u 1)
3
c
2
(u
2
+ 3u + 1)
3
c
5
, c
6
, c
7
c
9
, c
11
u
6
+ 2u
4
+ 3u
3
+ u
2
+ 3u + 1
c
10
u
6
+ 4u
5
+ 6u
4
3u
3
13u
2
7u + 1
12
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
3
, c
4
c
8
(y
2
3y + 1)
3
c
2
(y
2
7y + 1)
3
c
5
, c
6
, c
7
c
9
, c
11
y
6
+ 4y
5
+ 6y
4
3y
3
13y
2
7y + 1
c
10
y
6
4y
5
+ 34y
4
107y
3
+ 139y
2
75y + 1
13
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
3
1(vol +
1CS) Cusp shape
u = 0.170987 + 1.042930I
a = 1.89470 + 1.68750I
b = 1.98931 + 1.11042I
0.986960 10.0000
u = 0.170987 1.042930I
a = 1.89470 1.68750I
b = 1.98931 1.11042I
0.986960 10.0000
u = 1.13928
a = 0.0860817
b = 1.50630
8.88264 10.0000
u = 0.56964 + 1.40480I
a = 0.970092 0.868217I
b = 1.371190 + 0.120928I
8.88264 10.0000
u = 0.56964 1.40480I
a = 0.970092 + 0.868217I
b = 1.371190 0.120928I
8.88264 10.0000
u = 0.341974
a = 1.06471
b = 0.742547
0.986960 10.0000
14
IV. u-Polynomials
Crossings u-Polynomials at each crossing
c
1
((u 1)
4
)(u
2
u 1)
3
(u
20
2u
19
+ ··· 35u + 4)
c
2
((u + 1)
4
)(u
2
+ 3u + 1)
3
(u
20
+ 22u
19
+ ··· + 353u + 16)
c
3
, c
8
u
4
(u
2
u 1)
3
(u
20
+ 2u
19
+ ··· + 112u + 64)
c
4
((u + 1)
4
)(u
2
u 1)
3
(u
20
2u
19
+ ··· 35u + 4)
c
5
, c
6
(u
4
u
3
+ 3u
2
2u + 1)(u
6
+ 2u
4
+ 3u
3
+ u
2
+ 3u + 1)
· (u
20
2u
19
+ ··· 2u + 1)
c
7
(u
4
u
3
+ u
2
+ 1)(u
6
+ 2u
4
+ ··· + 3u + 1)(u
20
2u
19
+ ··· 2u + 1)
c
9
(u
4
+ u
3
+ 3u
2
+ 2u + 1)(u
6
+ 2u
4
+ 3u
3
+ u
2
+ 3u + 1)
· (u
20
2u
19
+ ··· 2u + 1)
c
10
(u
4
u
3
+ 3u
2
2u + 1)(u
6
+ 4u
5
+ 6u
4
3u
3
13u
2
7u + 1)
· (u
20
+ 14u
19
+ ··· + 4u + 1)
c
11
(u
4
+ u
3
+ u
2
+ 1)(u
6
+ 2u
4
+ ··· + 3u + 1)(u
20
2u
19
+ ··· 2u + 1)
15
V. Riley Polynomials
Crossings Riley Polynomials at each crossing
c
1
, c
4
((y 1)
4
)(y
2
3y + 1)
3
(y
20
22y
19
+ ··· 353y + 16)
c
2
((y 1)
4
)(y
2
7y + 1)
3
(y
20
46y
19
+ ··· + 223775y + 256)
c
3
, c
8
y
4
(y
2
3y + 1)
3
(y
20
18y
19
+ ··· + 45824y + 4096)
c
5
, c
6
, c
9
(y
4
+ 5y
3
+ 7y
2
+ 2y + 1)(y
6
+ 4y
5
+ 6y
4
3y
3
13y
2
7y + 1)
· (y
20
+ 14y
19
+ ··· + 4y + 1)
c
7
, c
11
(y
4
+ y
3
+ 3y
2
+ 2y + 1)(y
6
+ 4y
5
+ 6y
4
3y
3
13y
2
7y + 1)
· (y
20
+ 14y
19
+ ··· + 4y + 1)
c
10
(y
4
+ 5y
3
+ 7y
2
+ 2y + 1)(y
6
4y
5
+ ··· 75y + 1)
· (y
20
14y
19
+ ··· + 56y + 1)
16