11n
71
(K11n
71
)
A knot diagram
1
Linearized knot diagam
4 1 7 2 11 9 3 6 8 1 6
Solving Sequence
3,7
4
8,9 1,10
2 5 6 11
c
3
c
7
c
9
c
2
c
4
c
6
c
11
c
1
, c
5
, c
8
, c
10
Ideals for irreducible components
2
of X
par
I
u
1
= h481u
12
− 3744u
11
+ ··· + 245268d − 61940, −4057u
12
− 5862u
11
+ ··· + 163512c − 19528,
− 664u
12
− 4959u
11
+ ··· + 122634b + 22418, 15485u
12
+ 31932u
11
+ ··· + 490536a − 416896,
u
13
+ 2u
12
+ 5u
11
+ 6u
10
+ 6u
9
+ 6u
8
− u
7
− 4u
6
− 10u
5
− 12u
4
+ 24u
3
− 4u
2
+ 8i
I
u
2
= h−u
3
+ au + 2u
2
+ d − 4u + 3, 2u
4
a − 4u
3
a − u
4
+ 8u
2
a + 3u
3
− 6au − 6u
2
+ 2c + 2a + 7u − 4,
− u
4
a + 2u
3
a − 5u
2
a + 3au + u
2
+ b − 2a − u + 2,
3u
4
a − 9u
3
a − u
4
+ 16u
2
a + 3u
3
+ 2a
2
− 17au − 6u
2
+ 4a + 7u − 2, u
5
− 3u
4
+ 6u
3
− 7u
2
+ 4u − 2i
I
u
3
= hu
2
+ d, −u
2
+ c − 1, 2au − u
2
+ b + a − u, 4u
2
a + a
2
+ au − 3u
2
+ 6a − u − 5, u
3
+ u
2
+ 2u + 1i
I
u
4
= hu
2
c + cu − u
2
+ d + 2c − u − 1, u
2
c + c
2
− u
2
+ c − 1, b − u, a + u, u
3
+ u
2
+ 2u + 1i
I
u
5
= hu
2
+ d, −u
2
+ c − 1, b − u, a + u, u
3
+ u
2
+ 2u + 1i
I
v
1
= ha, d + 1, c − a + 1, b + 1, v + 1i
I
v
2
= ha, d, c − 1, b + 1, v − 1i
I
v
3
= hc, d − 1, b, a − 1, v − 1i
I
v
4
= ha, da + c − v − 1, dv − 1, cv − v
2
+ a − v, b + 1i
* 8 irreducible components of dim
C
= 0, with total 41 representations.
* 1 irreducible components of dim
C
= 1
1
The image of knot diagram is generated by the software “Draw programme” developed by An-
drew Bartholomew(http://www.layer8.co.uk/maths/draw/index.htm#Running-draw), where we modi-
fied some parts for our purpose(https://github.com/CATsTAILs/LinksPainter).
2
All coefficients of polynomials are rational numbers. But the coefficients are sometimes approximated
in decimal forms when there is not enough margin.
1