11n
72
(K11n
72
)
A knot diagram
1
Linearized knot diagam
4 1 8 2 11 9 4 6 8 5 10
Solving Sequence
5,10
11 6
1,2 4,8
3 7 9
c
10
c
5
c
11
c
4
c
3
c
7
c
9
c
1
, c
2
, c
6
, c
8
Ideals for irreducible components
2
of X
par
1
The image of knot diagram is generated by the software Draw programme developed by An-
drew Bartholomew(http://www.layer8.co.uk/maths/draw/index.htm#Running-draw), where we modi-
fied some parts for our purpose(https://github.com/CATsTAILs/LinksPainter).
1
I
u
1
= hu
2
+ d, u
6
u
5
+ u
3
2u
2
+ 2c 2u 1, u
6
u
5
+ u
3
2u
2
+ 2b 2u + 1, a 1,
u
8
+ u
7
u
6
2u
5
+ 2u
4
+ 3u
3
+ u
2
2u + 1i
I
u
2
= hu
2
+ d, u
10
2u
9
u
8
+ 2u
7
+ u
6
2u
5
4u
4
+ u
2
+ c + u 1, b 1,
u
10
+ 2u
9
u
8
5u
7
u
6
+ 6u
5
+ 4u
4
4u
3
5u
2
+ a + u + 4,
u
11
+ 2u
10
4u
8
2u
7
+ 4u
6
+ 5u
5
2u
4
5u
3
u
2
+ 3u + 1i
I
u
3
= h−u
10
u
9
+ u
8
+ 2u
7
u
6
2u
5
+ 2u
3
+ d u + 1,
u
10
+ 2u
9
u
8
5u
7
u
6
+ 6u
5
+ 4u
4
4u
3
5u
2
+ c + u + 3,
u
10
2u
9
u
8
+ 2u
7
+ u
6
2u
5
4u
4
+ u
2
+ b + u, a 1,
u
11
+ 2u
10
4u
8
2u
7
+ 4u
6
+ 5u
5
2u
4
5u
3
u
2
+ 3u + 1i
I
u
4
= h−17u
10
+ 8u
9
+ 27u
8
4u
7
39u
6
+ 6u
5
+ 68u
4
+ 2u
3
75u
2
+ 86d 41u + 80,
41u
10
6u
9
+ 55u
8
+ 132u
7
3u
6
198u
5
180u
4
+ 106u
3
+ 325u
2
+ 344c 109u 318, b 1,
41u
10
6u
9
+ 55u
8
+ 132u
7
3u
6
198u
5
180u
4
+ 106u
3
+ 325u
2
+ 344a 109u + 26,
u
11
3u
9
2u
8
+ 3u
7
+ 4u
6
2u
4
u
3
+ 3u
2
4i
I
u
5
= hd, c 1, b 1, a + 1, u + 1i
I
u
6
= hd + 1, c, b 1, a, u 1i
I
u
7
= hu
2
a + d + 1, c + a, b 1, a
2
+ u
2
+ a u, u
3
u 1i
I
u
8
= hd + 1, cb c 1, a + 1, u + 1i
I
v
1
= ha, d + 1, c + a 1, b 1, v + 1i
* 8 irreducible components of dim
C
= 0, with total 50 representations.
* 1 irreducible components of dim
C
= 1
2
All coefficients of polynomials are rational numbers. But the coefficients are sometimes approximated
in decimal forms when there is not enough margin.
2
I. I
u
1
=
hu
2
+d, u
6
u
5
+· · ·+2c1, u
6
u
5
+· · ·+2b+1, a1, u
8
+u
7
+· · ·2u+1i
(i) Arc colorings
a
5
=
0
u
a
10
=
1
0
a
11
=
1
u
2
a
6
=
u
u
3
+ u
a
1
=
u
2
+ 1
u
2
a
2
=
1
1
2
u
6
+
1
2
u
5
+ ··· + u
1
2
a
4
=
u
1
2
u
7
+
1
2
u
6
+ ··· + u
2
+
1
2
u
a
8
=
1
2
u
6
+
1
2
u
5
+ ··· + u +
1
2
u
2
a
3
=
u
4
u
2
+ 1
1
2
u
6
+
1
2
u
5
+ ··· + u
1
2
a
7
=
1
2
u
7
+
1
2
u
6
1
2
u
4
+ u
2
+
3
2
u
u
5
+ u
3
u
a
9
=
1
2
u
6
+
1
2
u
5
1
2
u
3
+ u +
1
2
u
4
a
9
=
1
2
u
6
+
1
2
u
5
1
2
u
3
+ u +
1
2
u
4
(ii) Obstruction class = 1
(iii) Cusp Shapes = 3u
7
+ 6u
6
u
5
7u
4
+ 3u
3
+ 16u
2
+ 7u 9
3
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
4
, c
5
c
6
, c
8
, c
10
u
8
u
7
u
6
+ 2u
5
+ 2u
4
3u
3
+ u
2
+ 2u + 1
c
2
, c
9
, c
11
u
8
+ 3u
7
+ 9u
6
+ 12u
5
+ 20u
4
+ 15u
3
+ 17u
2
+ 2u + 1
c
3
, c
7
u
8
u
7
u
6
+ 5u
5
4u
4
+ 8u
2
4u + 4
4
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
4
, c
5
c
6
, c
8
, c
10
y
8
3y
7
+ 9y
6
12y
5
+ 20y
4
15y
3
+ 17y
2
2y + 1
c
2
, c
9
, c
11
y
8
+ 9y
7
+ 49y
6
+ 160y
5
+ 336y
4
+ 425y
3
+ 269y
2
+ 30y + 1
c
3
, c
7
y
8
3y
7
+ 3y
6
y
5
32y
3
+ 32y
2
+ 48y + 16
5
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.725725 + 0.895340I
a = 1.00000
b = 1.23064 0.78420I
c = 0.230638 0.784197I
d = 0.274957 + 1.299540I
6.13361 + 3.53925I 3.48597 4.52491I
u = 0.725725 0.895340I
a = 1.00000
b = 1.23064 + 0.78420I
c = 0.230638 + 0.784197I
d = 0.274957 1.299540I
6.13361 3.53925I 3.48597 + 4.52491I
u = 1.052770 + 0.635427I
a = 1.00000
b = 1.68524 + 1.42536I
c = 0.68524 + 1.42536I
d = 0.70455 1.33791I
1.61416 7.63502I 9.74769 + 6.83193I
u = 1.052770 0.635427I
a = 1.00000
b = 1.68524 1.42536I
c = 0.68524 1.42536I
d = 0.70455 + 1.33791I
1.61416 + 7.63502I 9.74769 6.83193I
u = 1.213440 + 0.663590I
a = 1.00000
b = 2.02473 1.24139I
c = 1.02473 1.24139I
d = 1.03209 + 1.61046I
0.8567 + 14.6934I 9.31845 9.04054I
u = 1.213440 0.663590I
a = 1.00000
b = 2.02473 + 1.24139I
c = 1.02473 + 1.24139I
d = 1.03209 1.61046I
0.8567 14.6934I 9.31845 + 9.04054I
6
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.386400 + 0.333144I
a = 1.00000
b = 0.059390 + 0.519525I
c = 0.940610 + 0.519525I
d = 0.038320 0.257454I
0.441338 1.103720I 5.44788 + 6.54224I
u = 0.386400 0.333144I
a = 1.00000
b = 0.059390 0.519525I
c = 0.940610 0.519525I
d = 0.038320 + 0.257454I
0.441338 + 1.103720I 5.44788 6.54224I
7
II. I
u
2
= hu
2
+ d, u
10
2u
9
+ · · · + c 1, b 1, u
10
+ 2u
9
+ · · · + a +
4, u
11
+ 2u
10
+ · · · + 3u + 1i
(i) Arc colorings
a
5
=
0
u
a
10
=
1
0
a
11
=
1
u
2
a
6
=
u
u
3
+ u
a
1
=
u
2
+ 1
u
2
a
2
=
u
10
2u
9
+ u
8
+ 5u
7
+ u
6
6u
5
4u
4
+ 4u
3
+ 5u
2
u 4
1
a
4
=
u
10
3u
9
u
8
+ 5u
7
+ 4u
6
5u
5
7u
4
+ 2u
3
+ 7u
2
+ u 4
u
9
+ u
8
u
7
2u
6
+ u
5
+ 2u
4
2u
2
+ 1
a
8
=
u
10
+ 2u
9
+ u
8
2u
7
u
6
+ 2u
5
+ 4u
4
u
2
u + 1
u
2
a
3
=
u
10
3u
9
+ u
8
+ 7u
7
+ 3u
6
9u
5
7u
4
+ 5u
3
+ 10u
2
2u 6
u
10
+ 2u
9
u
8
4u
7
u
6
+ 5u
5
+ 3u
4
3u
3
5u
2
+ 2u + 2
a
7
=
u
9
+ 2u
8
+ u
7
2u
6
u
5
+ 2u
4
+ 3u
3
u 1
u
5
+ u
3
u
a
9
=
u
10
+ 2u
9
+ u
8
2u
7
u
6
+ 2u
5
+ 4u
4
2u
2
u + 1
u
4
a
9
=
u
10
+ 2u
9
+ u
8
2u
7
u
6
+ 2u
5
+ 4u
4
2u
2
u + 1
u
4
(ii) Obstruction class = 1
(iii) Cusp Shapes = 4u
10
+ 6u
9
10u
7
4u
6
+ 6u
5
+ 12u
4
4u
3
8u
2
6u 4
8
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
4
u
11
3u
9
+ 2u
8
+ 3u
7
4u
6
+ 2u
4
u
3
3u
2
+ 4
c
2
u
11
+ 6u
10
+ ··· + 24u + 16
c
3
, c
7
u
11
2u
10
u
9
+ 3u
8
+ u
7
2u
6
+ 4u
5
11u
4
+ 9u
3
u
2
2u + 2
c
5
, c
6
, c
8
c
10
u
11
2u
10
+ 4u
8
2u
7
4u
6
+ 5u
5
+ 2u
4
5u
3
+ u
2
+ 3u 1
c
9
, c
11
u
11
+ 4u
10
+ ··· + 11u + 1
9
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
4
y
11
6y
10
+ ··· + 24y 16
c
2
y
11
6y
10
+ ··· 224y 256
c
3
, c
7
y
11
6y
10
+ ··· + 8y 4
c
5
, c
6
, c
8
c
10
y
11
4y
10
+ ··· + 11y 1
c
9
, c
11
y
11
+ 8y
10
+ ··· + 67y 1
10
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
2
1(vol +
1CS) Cusp shape
u = 0.952018 + 0.226513I
a = 1.085970 + 0.401284I
b = 1.00000
c = 0.40050 + 4.16652I
d = 0.855030 0.431288I
5.02081 0.74196I 15.5393 + 1.1191I
u = 0.952018 0.226513I
a = 1.085970 0.401284I
b = 1.00000
c = 0.40050 4.16652I
d = 0.855030 + 0.431288I
5.02081 + 0.74196I 15.5393 1.1191I
u = 0.850023 + 0.614930I
a = 0.007368 0.850380I
b = 1.00000
c = 0.138893 + 1.373110I
d = 0.344399 1.045410I
0.08426 2.41892I 7.07184 + 2.88947I
u = 0.850023 0.614930I
a = 0.007368 + 0.850380I
b = 1.00000
c = 0.138893 1.373110I
d = 0.344399 + 1.045410I
0.08426 + 2.41892I 7.07184 2.88947I
u = 0.523691 + 0.948055I
a = 0.184008 + 1.141810I
b = 1.00000
c = 0.103739 0.547821I
d = 0.624556 + 0.992977I
5.32590 2.58451I 3.80806 + 1.01660I
u = 0.523691 0.948055I
a = 0.184008 1.141810I
b = 1.00000
c = 0.103739 + 0.547821I
d = 0.624556 0.992977I
5.32590 + 2.58451I 3.80806 1.01660I
11
Solutions to I
u
2
1(vol +
1CS) Cusp shape
u = 0.978643 + 0.595733I
a = 0.939343 0.770160I
b = 1.00000
c = 0.47651 1.53693I
d = 0.602844 + 1.166020I
2.61864 + 4.69742I 9.08124 5.88322I
u = 0.978643 0.595733I
a = 0.939343 + 0.770160I
b = 1.00000
c = 0.47651 + 1.53693I
d = 0.602844 1.166020I
2.61864 4.69742I 9.08124 + 5.88322I
u = 1.126060 + 0.711355I
a = 0.175044 + 0.783251I
b = 1.00000
c = 0.81852 1.22144I
d = 0.76197 + 1.60205I
3.47965 + 8.65115I 6.21430 5.57892I
u = 1.126060 0.711355I
a = 0.175044 0.783251I
b = 1.00000
c = 0.81852 + 1.22144I
d = 0.76197 1.60205I
3.47965 8.65115I 6.21430 + 5.57892I
u = 0.347303
a = 3.24600
b = 1.00000
c = 1.27433
d = 0.120619
2.16369 2.57060
12
III. I
u
3
= h−u
10
u
9
+ · · · + d + 1, u
10
+ 2u
9
+ · · · + c + 3, u
10
2u
9
+
· · · + b + u, a 1, u
11
+ 2u
10
+ · · · + 3u + 1i
(i) Arc colorings
a
5
=
0
u
a
10
=
1
0
a
11
=
1
u
2
a
6
=
u
u
3
+ u
a
1
=
u
2
+ 1
u
2
a
2
=
1
u
10
+ 2u
9
+ u
8
2u
7
u
6
+ 2u
5
+ 4u
4
u
2
u
a
4
=
u
u
9
+ 2u
8
+ u
7
2u
6
u
5
+ 2u
4
+ 4u
3
2u 1
a
8
=
u
10
2u
9
+ u
8
+ 5u
7
+ u
6
6u
5
4u
4
+ 4u
3
+ 5u
2
u 3
u
10
+ u
9
u
8
2u
7
+ u
6
+ 2u
5
2u
3
+ u 1
a
3
=
u
4
u
2
+ 1
u
10
+ 2u
9
+ u
8
2u
7
u
6
+ 2u
5
+ 3u
4
u
2
u
a
7
=
2u
10
3u
9
+ 2u
8
+ 7u
7
9u
5
5u
4
+ 7u
3
+ 7u
2
3u 4
u
10
u
9
3u
8
u
7
+ 5u
6
+ 2u
5
3u
4
5u
3
+ 3u
2
+ 3u 1
a
9
=
2u
10
3u
9
+ 2u
8
+ 7u
7
8u
5
4u
4
+ 6u
3
+ 6u
2
2u 3
u
10
u
8
+ 3u
6
u
5
2u
4
u
3
+ 3u
2
2
a
9
=
2u
10
3u
9
+ 2u
8
+ 7u
7
8u
5
4u
4
+ 6u
3
+ 6u
2
2u 3
u
10
u
8
+ 3u
6
u
5
2u
4
u
3
+ 3u
2
2
(ii) Obstruction class = 1
(iii) Cusp Shapes = 4u
10
+ 6u
9
10u
7
4u
6
+ 6u
5
+ 12u
4
4u
3
8u
2
6u 4
13
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
4
, c
5
c
10
u
11
2u
10
+ 4u
8
2u
7
4u
6
+ 5u
5
+ 2u
4
5u
3
+ u
2
+ 3u 1
c
2
, c
11
u
11
+ 4u
10
+ ··· + 11u + 1
c
3
, c
7
u
11
2u
10
u
9
+ 3u
8
+ u
7
2u
6
+ 4u
5
11u
4
+ 9u
3
u
2
2u + 2
c
6
, c
8
u
11
3u
9
+ 2u
8
+ 3u
7
4u
6
+ 2u
4
u
3
3u
2
+ 4
c
9
u
11
+ 6u
10
+ ··· + 24u + 16
14
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
4
, c
5
c
10
y
11
4y
10
+ ··· + 11y 1
c
2
, c
11
y
11
+ 8y
10
+ ··· + 67y 1
c
3
, c
7
y
11
6y
10
+ ··· + 8y 4
c
6
, c
8
y
11
6y
10
+ ··· + 24y 16
c
9
y
11
6y
10
+ ··· 224y 256
15
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
3
1(vol +
1CS) Cusp shape
u = 0.952018 + 0.226513I
a = 1.00000
b = 0.59950 + 4.16652I
c = 0.085971 + 0.401284I
d = 1.246580 + 0.306031I
5.02081 0.74196I 15.5393 + 1.1191I
u = 0.952018 0.226513I
a = 1.00000
b = 0.59950 4.16652I
c = 0.085971 0.401284I
d = 1.246580 0.306031I
5.02081 + 0.74196I 15.5393 1.1191I
u = 0.850023 + 0.614930I
a = 1.00000
b = 1.13889 + 1.37311I
c = 1.007370 0.850380I
d = 0.235931 + 0.760242I
0.08426 2.41892I 7.07184 + 2.88947I
u = 0.850023 0.614930I
a = 1.00000
b = 1.13889 1.37311I
c = 1.007370 + 0.850380I
d = 0.235931 0.760242I
0.08426 + 2.41892I 7.07184 2.88947I
u = 0.523691 + 0.948055I
a = 1.00000
b = 1.103740 0.547821I
c = 0.815992 + 1.141810I
d = 0.37585 1.52338I
5.32590 2.58451I 3.80806 + 1.01660I
u = 0.523691 0.948055I
a = 1.00000
b = 1.103740 + 0.547821I
c = 0.815992 1.141810I
d = 0.37585 + 1.52338I
5.32590 + 2.58451I 3.80806 1.01660I
16
Solutions to I
u
3
1(vol +
1CS) Cusp shape
u = 0.978643 + 0.595733I
a = 1.00000
b = 1.47651 1.53693I
c = 0.060657 0.770160I
d = 1.86145 0.53501I
2.61864 + 4.69742I 9.08124 5.88322I
u = 0.978643 0.595733I
a = 1.00000
b = 1.47651 + 1.53693I
c = 0.060657 + 0.770160I
d = 1.86145 + 0.53501I
2.61864 4.69742I 9.08124 + 5.88322I
u = 1.126060 + 0.711355I
a = 1.00000
b = 1.81852 1.22144I
c = 0.824956 + 0.783251I
d = 0.883402 0.724805I
3.47965 + 8.65115I 6.21430 5.57892I
u = 1.126060 0.711355I
a = 1.00000
b = 1.81852 + 1.22144I
c = 0.824956 0.783251I
d = 0.883402 + 0.724805I
3.47965 8.65115I 6.21430 + 5.57892I
u = 0.347303
a = 1.00000
b = 0.274328
c = 2.24600
d = 1.27091
2.16369 2.57060
17
IV. I
u
4
= h−17u
10
+ 8u
9
+ · · · + 86d + 80, 41u
10
6u
9
+ · · · + 344c
318, b 1, 41u
10
6u
9
+ · · · + 344a + 26, u
11
3u
9
+ · · · + 3u
2
4i
(i) Arc colorings
a
5
=
0
u
a
10
=
1
0
a
11
=
1
u
2
a
6
=
u
u
3
+ u
a
1
=
u
2
+ 1
u
2
a
2
=
0.119186u
10
+ 0.0174419u
9
+ ··· + 0.316860u 0.0755814
1
a
4
=
0.232558u
10
0.197674u
9
+ ··· 0.174419u 0.476744
0.0174419u
10
+ 0.197674u
9
+ ··· + 0.924419u + 0.476744
a
8
=
0.119186u
10
+ 0.0174419u
9
+ ··· + 0.316860u + 0.924419
0.197674u
10
0.0930233u
9
+ ··· + 0.476744u 0.930233
a
3
=
0.0377907u
10
0.238372u
9
+ ··· + 0.00290698u 0.633721
0.279070u
10
+ 0.162791u
9
+ ··· + 0.790698u + 0.627907
a
7
=
0.156977u
10
+ 0.279070u
9
+ ··· 0.180233u + 0.790698
0.238372u
10
+ 0.0348837u
9
+ ··· + 0.633721u 0.151163
a
9
=
0.0784884u
10
+ 0.110465u
9
+ ··· 0.159884u + 0.854651
0.116279u
10
0.348837u
9
+ ··· + 0.162791u 0.488372
a
9
=
0.0784884u
10
+ 0.110465u
9
+ ··· 0.159884u + 0.854651
0.116279u
10
0.348837u
9
+ ··· + 0.162791u 0.488372
(ii) Obstruction class = 1
(iii) Cusp Shapes
=
54
43
u
10
+
10
43
u
9
106
43
u
8
134
43
u
7
38
43
u
6
+
158
43
u
5
+
128
43
u
4
+
24
43
u
3
126
43
u
2
+
196
43
u
244
43
18
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
4
, c
6
c
8
u
11
2u
10
+ 4u
8
2u
7
4u
6
+ 5u
5
+ 2u
4
5u
3
+ u
2
+ 3u 1
c
2
, c
9
u
11
+ 4u
10
+ ··· + 11u + 1
c
3
, c
7
u
11
2u
10
u
9
+ 3u
8
+ u
7
2u
6
+ 4u
5
11u
4
+ 9u
3
u
2
2u + 2
c
5
, c
10
u
11
3u
9
+ 2u
8
+ 3u
7
4u
6
+ 2u
4
u
3
3u
2
+ 4
c
11
u
11
+ 6u
10
+ ··· + 24u + 16
19
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
4
, c
6
c
8
y
11
4y
10
+ ··· + 11y 1
c
2
, c
9
y
11
+ 8y
10
+ ··· + 67y 1
c
3
, c
7
y
11
6y
10
+ ··· + 8y 4
c
5
, c
10
y
11
6y
10
+ ··· + 24y 16
c
11
y
11
6y
10
+ ··· 224y 256
20
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
4
1(vol +
1CS) Cusp shape
u = 0.360061 + 1.006500I
a = 0.271755 + 1.216000I
b = 1.00000
c = 0.72825 + 1.21600I
d = 0.76197 1.60205I
3.47965 8.65115I 6.21430 + 5.57892I
u = 0.360061 1.006500I
a = 0.271755 1.216000I
b = 1.00000
c = 0.72825 1.21600I
d = 0.76197 + 1.60205I
3.47965 + 8.65115I 6.21430 5.57892I
u = 0.529187 + 0.718311I
a = 0.010188 1.175860I
b = 1.00000
c = 1.01019 1.17586I
d = 0.344399 + 1.045410I
0.08426 + 2.41892I 7.07184 2.88947I
u = 0.529187 0.718311I
a = 0.010188 + 1.175860I
b = 1.00000
c = 1.01019 + 1.17586I
d = 0.344399 1.045410I
0.08426 2.41892I 7.07184 + 2.88947I
u = 1.12735
a = 0.308071
b = 1.00000
c = 0.691929
d = 0.120619
2.16369 2.57060
u = 1.124760 + 0.136043I
a = 0.810207 0.299385I
b = 1.00000
c = 0.189793 0.299385I
d = 0.855030 0.431288I
5.02081 0.74196I 15.5393 + 1.1191I
21
Solutions to I
u
4
1(vol +
1CS) Cusp shape
u = 1.124760 0.136043I
a = 0.810207 + 0.299385I
b = 1.00000
c = 0.189793 + 0.299385I
d = 0.855030 + 0.431288I
5.02081 + 0.74196I 15.5393 1.1191I
u = 0.986131 + 0.772404I
a = 0.137568 + 0.853636I
b = 1.00000
c = 0.862432 + 0.853636I
d = 0.624556 0.992977I
5.32590 + 2.58451I 3.80806 1.01660I
u = 0.986131 0.772404I
a = 0.137568 0.853636I
b = 1.00000
c = 0.862432 0.853636I
d = 0.624556 + 0.992977I
5.32590 2.58451I 3.80806 + 1.01660I
u = 1.378090 + 0.194114I
a = 0.636622 + 0.521961I
b = 1.00000
c = 0.363378 + 0.521961I
d = 0.602844 + 1.166020I
2.61864 + 4.69742I 9.08124 5.88322I
u = 1.378090 0.194114I
a = 0.636622 0.521961I
b = 1.00000
c = 0.363378 0.521961I
d = 0.602844 1.166020I
2.61864 4.69742I 9.08124 + 5.88322I
22
V. I
u
5
= hd, c 1, b 1, a + 1, u + 1i
(i) Arc colorings
a
5
=
0
1
a
10
=
1
0
a
11
=
1
1
a
6
=
1
0
a
1
=
0
1
a
2
=
1
1
a
4
=
1
0
a
8
=
1
0
a
3
=
1
0
a
7
=
1
0
a
9
=
1
0
a
9
=
1
0
(ii) Obstruction class = 1
(iii) Cusp Shapes = 12
23
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
5
u 1
c
2
, c
4
, c
10
c
11
u + 1
c
3
, c
6
, c
7
c
8
, c
9
u
24
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
2
, c
4
c
5
, c
10
, c
11
y 1
c
3
, c
6
, c
7
c
8
, c
9
y
25
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
5
1(vol +
1CS) Cusp shape
u = 1.00000
a = 1.00000
b = 1.00000
c = 1.00000
d = 0
3.28987 12.0000
26
VI. I
u
6
= hd + 1, c, b 1, a, u 1i
(i) Arc colorings
a
5
=
0
1
a
10
=
1
0
a
11
=
1
1
a
6
=
1
0
a
1
=
0
1
a
2
=
0
1
a
4
=
0
1
a
8
=
0
1
a
3
=
0
1
a
7
=
0
1
a
9
=
1
1
a
9
=
1
1
(ii) Obstruction class = 1
(iii) Cusp Shapes = 12
27
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
2
, c
3
c
4
, c
7
u
c
5
, c
8
, c
9
c
11
u + 1
c
6
, c
10
u 1
28
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
2
, c
3
c
4
, c
7
y
c
5
, c
6
, c
8
c
9
, c
10
, c
11
y 1
29
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
6
1(vol +
1CS) Cusp shape
u = 1.00000
a = 0
b = 1.00000
c = 0
d = 1.00000
3.28987 12.0000
30
VII. I
u
7
= hu
2
a + d + 1, c + a, b 1, a
2
+ u
2
+ a u, u
3
u 1i
(i) Arc colorings
a
5
=
0
u
a
10
=
1
0
a
11
=
1
u
2
a
6
=
u
1
a
1
=
u
2
+ 1
u
2
a
2
=
a
1
a
4
=
au + u
2
u 1
au + u
a
8
=
a
u
2
a 1
a
3
=
au + u
2
+ a u 1
u
2
a + au + u + 1
a
7
=
au + u
2
a u 1
u
2
a + au + u 1
a
9
=
u
2
a + u
2
a
u
2
a + au + u 1
a
9
=
u
2
a + u
2
a
u
2
a + au + u 1
(ii) Obstruction class = 1
(iii) Cusp Shapes = 6
31
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
4
, c
5
c
6
, c
8
, c
10
(u
3
u + 1)
2
c
2
, c
9
, c
11
(u
3
+ 2u
2
+ u + 1)
2
c
3
, c
7
(u + 1)
6
32
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
4
, c
5
c
6
, c
8
, c
10
(y
3
2y
2
+ y 1)
2
c
2
, c
9
, c
11
(y
3
2y
2
3y 1)
2
c
3
, c
7
(y 1)
6
33
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
7
1(vol +
1CS) Cusp shape
u = 0.662359 + 0.562280I
a = 0.162359 + 0.986732I
b = 1.00000
c = 0.162359 0.986732I
d = 1.75488
1.64493 6.00000
u = 0.662359 + 0.562280I
a = 1.16236 0.98673I
b = 1.00000
c = 1.16236 + 0.98673I
d = 0.122561 0.744862I
1.64493 6.00000
u = 0.662359 0.562280I
a = 0.162359 0.986732I
b = 1.00000
c = 0.162359 + 0.986732I
d = 1.75488
1.64493 6.00000
u = 0.662359 0.562280I
a = 1.16236 + 0.98673I
b = 1.00000
c = 1.16236 0.98673I
d = 0.122561 + 0.744862I
1.64493 6.00000
u = 1.32472
a = 0.500000 + 0.424452I
b = 1.00000
c = 0.500000 0.424452I
d = 0.122561 0.744862I
1.64493 6.00000
u = 1.32472
a = 0.500000 0.424452I
b = 1.00000
c = 0.500000 + 0.424452I
d = 0.122561 + 0.744862I
1.64493 6.00000
34
VIII. I
u
8
= hd + 1, cb c 1, a + 1, u + 1i
(i) Arc colorings
a
5
=
0
1
a
10
=
1
0
a
11
=
1
1
a
6
=
1
0
a
1
=
0
1
a
2
=
1
b
a
4
=
1
b 1
a
8
=
c
1
a
3
=
1
b 1
a
7
=
c
1
a
9
=
c + 1
1
a
9
=
c + 1
1
(ii) Obstruction class = 1
(iii) Cusp Shapes = c
2
b
2
+ 2b 17
(iv) u-Polynomials at the component : It cannot be defined for a positive
dimension component.
(v) Riley Polynomials at the component : It cannot be defined for a positive
dimension component.
35
(iv) Complex Volumes and Cusp Shapes
Solution to I
u
8
1(vol +
1CS) Cusp shape
u = ···
a = ···
b = ···
c = ···
d = ···
4.93480 18.1451 0.9948I
36
IX. I
v
1
= ha, d + 1, c + a 1, b 1, v + 1i
(i) Arc colorings
a
5
=
1
0
a
10
=
1
0
a
11
=
1
0
a
6
=
1
0
a
1
=
1
0
a
2
=
0
1
a
4
=
1
1
a
8
=
1
1
a
3
=
1
1
a
7
=
1
1
a
9
=
2
1
a
9
=
2
1
(ii) Obstruction class = 1
(iii) Cusp Shapes = 12
37
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
6
u 1
c
2
, c
4
, c
8
c
9
u + 1
c
3
, c
5
, c
7
c
10
, c
11
u
38
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
2
, c
4
c
6
, c
8
, c
9
y 1
c
3
, c
5
, c
7
c
10
, c
11
y
39
(vi) Complex Volumes and Cusp Shapes
Solutions to I
v
1
1(vol +
1CS) Cusp shape
v = 1.00000
a = 0
b = 1.00000
c = 1.00000
d = 1.00000
3.28987 12.0000
40
X. u-Polynomials
Crossings u-Polynomials at each crossing
c
1
, c
6
u(u 1)
2
(u
3
u + 1)
2
(u
8
u
7
+ ··· + 2u + 1)
· (u
11
3u
9
+ 2u
8
+ 3u
7
4u
6
+ 2u
4
u
3
3u
2
+ 4)
· (u
11
2u
10
+ 4u
8
2u
7
4u
6
+ 5u
5
+ 2u
4
5u
3
+ u
2
+ 3u 1)
2
c
2
, c
9
, c
11
u(u + 1)
2
(u
3
+ 2u
2
+ u + 1)
2
· (u
8
+ 3u
7
+ 9u
6
+ 12u
5
+ 20u
4
+ 15u
3
+ 17u
2
+ 2u + 1)
· ((u
11
+ 4u
10
+ ··· + 11u + 1)
2
)(u
11
+ 6u
10
+ ··· + 24u + 16)
c
3
, c
7
u
3
(u + 1)
6
(u
8
u
7
u
6
+ 5u
5
4u
4
+ 8u
2
4u + 4)
· (u
11
2u
10
u
9
+ 3u
8
+ u
7
2u
6
+ 4u
5
11u
4
+ 9u
3
u
2
2u + 2)
3
c
4
, c
8
u(u + 1)
2
(u
3
u + 1)
2
(u
8
u
7
+ ··· + 2u + 1)
· (u
11
3u
9
+ 2u
8
+ 3u
7
4u
6
+ 2u
4
u
3
3u
2
+ 4)
· (u
11
2u
10
+ 4u
8
2u
7
4u
6
+ 5u
5
+ 2u
4
5u
3
+ u
2
+ 3u 1)
2
c
5
, c
10
u(u 1)(u + 1)(u
3
u + 1)
2
(u
8
u
7
+ ··· + 2u + 1)
· (u
11
3u
9
+ 2u
8
+ 3u
7
4u
6
+ 2u
4
u
3
3u
2
+ 4)
· (u
11
2u
10
+ 4u
8
2u
7
4u
6
+ 5u
5
+ 2u
4
5u
3
+ u
2
+ 3u 1)
2
41
XI. Riley Polynomials
Crossings Riley Polynomials at each crossing
c
1
, c
4
, c
5
c
6
, c
8
, c
10
y(y 1)
2
(y
3
2y
2
+ y 1)
2
· (y
8
3y
7
+ 9y
6
12y
5
+ 20y
4
15y
3
+ 17y
2
2y + 1)
· (y
11
6y
10
+ ··· + 24y 16)(y
11
4y
10
+ ··· + 11y 1)
2
c
2
, c
9
, c
11
y(y 1)
2
(y
3
2y
2
3y 1)
2
· (y
8
+ 9y
7
+ 49y
6
+ 160y
5
+ 336y
4
+ 425y
3
+ 269y
2
+ 30y + 1)
· (y
11
6y
10
+ ··· 224y 256)(y
11
+ 8y
10
+ ··· + 67y 1)
2
c
3
, c
7
y
3
(y 1)
6
(y
8
3y
7
+ 3y
6
y
5
32y
3
+ 32y
2
+ 48y + 16)
· (y
11
6y
10
+ ··· + 8y 4)
3
42