11n
73
(K11n
73
)
A knot diagram
1
Linearized knot diagam
4 1 8 2 11 9 4 10 7 5 10
Solving Sequence
2,4
5
1,8
3
7,10
9 11 6
c
4
c
1
c
3
c
7
c
9
c
11
c
5
c
2
, c
6
, c
8
, c
10
Ideals for irreducible components
2
of X
par
I
u
1
= h−u
5
+ 3u
4
− 6u
3
+ 6u
2
+ 4d − u − 1, −u
5
+ 3u
4
− 6u
3
+ 6u
2
+ 4c − 5u − 1, u
4
− 2u
3
+ 2u
2
+ 2b − 1,
u
6
− 3u
5
+ 6u
4
− 5u
3
+ 2u
2
+ 2a + 6u + 3, u
7
− 3u
6
+ 5u
5
− 3u
4
− u
3
+ 7u
2
+ 3u − 1i
I
u
2
= hu
3
+ 4d − u + 2, −u
3
+ 2u
2
+ 4c − 3u − 4, −u
3
+ 4b + u + 2, −5u
3
+ 4u
2
+ 8a − 7u − 14,
u
4
− 2u
3
+ 3u
2
+ 4u − 4i
I
u
3
= hd, c + 1, b, a + 1, u + 1i
I
u
4
= hd + 1, c + 1, b, a − 1, u + 1i
I
u
5
= hd − c − 1, ca + a + 1, b, u + 1i
I
v
1
= hc, d + 1, b, a − 1, v − 1i
* 5 irreducible components of dim
C
= 0, with total 14 representations.
* 1 irreducible components of dim
C
= 1
1
The image of knot diagram is generated by the software “Draw programme” developed by An-
drew Bartholomew(http://www.layer8.co.uk/maths/draw/index.htm#Running-draw), where we modi-
fied some parts for our purpose(https://github.com/CATsTAILs/LinksPainter).
2
All coefficients of polynomials are rational numbers. But the coefficients are sometimes approximated
in decimal forms when there is not enough margin.
1