11n
73
(K11n
73
)
A knot diagram
1
Linearized knot diagam
4 1 8 2 11 9 4 10 7 5 10
Solving Sequence
2,4
5
1,8
3
7,10
9 11 6
c
4
c
1
c
3
c
7
c
9
c
11
c
5
c
2
, c
6
, c
8
, c
10
Ideals for irreducible components
2
of X
par
I
u
1
= h−u
5
+ 3u
4
6u
3
+ 6u
2
+ 4d u 1, u
5
+ 3u
4
6u
3
+ 6u
2
+ 4c 5u 1, u
4
2u
3
+ 2u
2
+ 2b 1,
u
6
3u
5
+ 6u
4
5u
3
+ 2u
2
+ 2a + 6u + 3, u
7
3u
6
+ 5u
5
3u
4
u
3
+ 7u
2
+ 3u 1i
I
u
2
= hu
3
+ 4d u + 2, u
3
+ 2u
2
+ 4c 3u 4, u
3
+ 4b + u + 2, 5u
3
+ 4u
2
+ 8a 7u 14,
u
4
2u
3
+ 3u
2
+ 4u 4i
I
u
3
= hd, c + 1, b, a + 1, u + 1i
I
u
4
= hd + 1, c + 1, b, a 1, u + 1i
I
u
5
= hd c 1, ca + a + 1, b, u + 1i
I
v
1
= hc, d + 1, b, a 1, v 1i
* 5 irreducible components of dim
C
= 0, with total 14 representations.
* 1 irreducible components of dim
C
= 1
1
The image of knot diagram is generated by the software Draw programme developed by An-
drew Bartholomew(http://www.layer8.co.uk/maths/draw/index.htm#Running-draw), where we modi-
fied some parts for our purpose(https://github.com/CATsTAILs/LinksPainter).
2
All coefficients of polynomials are rational numbers. But the coefficients are sometimes approximated
in decimal forms when there is not enough margin.
1
I. I
u
1
= h−u
5
+ 3u
4
+ · · · + 4d 1, u
5
+ 3u
4
+ · · · + 4c 1, u
4
2u
3
+
2u
2
+ 2b 1, u
6
3u
5
+ · · · + 2a + 3, u
7
3u
6
+ · · · + 3u 1i
(i) Arc colorings
a
2
=
0
u
a
4
=
1
0
a
5
=
1
u
2
a
1
=
u
u
a
8
=
1
2
u
6
+
3
2
u
5
+ ··· 3u
3
2
1
2
u
4
+ u
3
u
2
+
1
2
a
3
=
u
3
u
3
+ u
a
7
=
1
2
u
6
+
3
2
u
5
+ ··· 3u 2
1
2
u
4
+ u
3
u
2
+
1
2
a
10
=
1
4
u
5
3
4
u
4
+ ··· +
5
4
u +
1
4
1
4
u
5
3
4
u
4
+ ··· +
1
4
u +
1
4
a
9
=
1
2
u
6
+
3
2
u
5
+ ···
3
2
u
3
2
1
4
u
6
1
4
u
5
+ ··· +
3
4
u +
1
2
a
11
=
1
4
u
5
3
4
u
4
+ ··· +
1
4
u +
1
4
1
4
u
5
3
4
u
4
+ ··· +
1
4
u +
1
4
a
6
=
1
4
u
6
3
4
u
5
+ ··· +
1
4
u + 1
1
4
u
6
3
4
u
5
+ ··· +
5
4
u
2
+
1
4
u
a
6
=
1
4
u
6
3
4
u
5
+ ··· +
1
4
u + 1
1
4
u
6
3
4
u
5
+ ··· +
5
4
u
2
+
1
4
u
(ii) Obstruction class = 1
(iii) Cusp Shapes = 3u
6
19
2
u
5
+
35
2
u
4
14u
3
+ 3u
2
+
39
2
u +
9
2
2
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
4
, c
5
c
10
u
7
3u
6
+ 5u
5
3u
4
u
3
+ 7u
2
+ 3u 1
c
2
, c
11
u
7
u
6
+ 5u
5
29u
4
+ 67u
3
+ 61u
2
+ 23u + 1
c
3
, c
7
u
7
6u
5
+ 4u
4
+ 32u
3
12u
2
+ 16u 8
c
6
, c
9
u
7
+ u
6
4u
5
+ 15u
3
+ 3u
2
8u 4
c
8
u
7
9u
6
+ 46u
5
142u
4
+ 297u
3
249u
2
+ 88u 16
3
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
4
, c
5
c
10
y
7
+ y
6
+ 5y
5
+ 29y
4
+ 67y
3
61y
2
+ 23y 1
c
2
, c
11
y
7
+ 9y
6
+ 101y
5
3y
4
+ 8259y
3
581y
2
+ 407y 1
c
3
, c
7
y
7
12y
6
+ 100y
5
368y
4
+ 928y
3
+ 944y
2
+ 64y 64
c
6
, c
9
y
7
9y
6
+ 46y
5
142y
4
+ 297y
3
249y
2
+ 88y 16
c
8
y
7
+ 11y
6
+ 154y
5
+ 2854y
4
+ 25301y
3
14273y
2
224y 256
4
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.643564 + 0.238013I
a = 0.348787 + 1.223080I
b = 0.031685 + 0.698136I
c = 1.34441 + 1.38199I
d = 0.700849 + 1.143970I
1.11796 + 1.29283I 4.63450 5.74515I
u = 0.643564 0.238013I
a = 0.348787 1.223080I
b = 0.031685 0.698136I
c = 1.34441 1.38199I
d = 0.700849 1.143970I
1.11796 1.29283I 4.63450 + 5.74515I
u = 0.46828 + 1.59550I
a = 1.42404 0.69085I
b = 2.23667 1.02998I
c = 0.124307 + 0.903472I
d = 0.592592 0.692030I
5.28066 2.46552I 0.37200 + 1.61165I
u = 0.46828 1.59550I
a = 1.42404 + 0.69085I
b = 2.23667 + 1.02998I
c = 0.124307 0.903472I
d = 0.592592 + 0.692030I
5.28066 + 2.46552I 0.37200 1.61165I
u = 0.222829
a = 2.19711
b = 0.460179
c = 0.468941
d = 0.246113
1.26042 8.87750
u = 1.56387 + 1.00084I
a = 1.37138 2.22950I
b = 2.03826 1.30990I
c = 0.765750 + 0.890549I
d = 2.32961 0.11029I
14.9463 10.4045I 1.17625 + 4.09895I
5
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 1.56387 1.00084I
a = 1.37138 + 2.22950I
b = 2.03826 + 1.30990I
c = 0.765750 0.890549I
d = 2.32961 + 0.11029I
14.9463 + 10.4045I 1.17625 4.09895I
6
II. I
u
2
= hu
3
+ 4d u + 2, u
3
+ 2u
2
+ 4c 3u 4, u
3
+ 4b + u +
2, 5u
3
+ 4u
2
+ · · · + 8a 14, u
4
2u
3
+ 3u
2
+ 4u 4i
(i) Arc colorings
a
2
=
0
u
a
4
=
1
0
a
5
=
1
u
2
a
1
=
u
u
a
8
=
5
8
u
3
1
2
u
2
+
7
8
u +
7
4
1
4
u
3
1
4
u
1
2
a
3
=
u
3
u
3
+ u
a
7
=
3
8
u
3
1
2
u
2
+
9
8
u +
9
4
1
4
u
3
1
4
u
1
2
a
10
=
1
4
u
3
1
2
u
2
+
3
4
u + 1
1
4
u
3
+
1
4
u
1
2
a
9
=
5
8
u
3
u
2
+
7
8
u +
9
4
u
3
+ u 1
a
11
=
1
2
u
3
1
2
u
2
+
3
2
u +
3
2
3
4
u
3
2u
2
3
4
u +
3
2
a
6
=
5
8
u
3
+ u
2
+
1
8
u
9
4
2u
3
2u + 1
a
6
=
5
8
u
3
+ u
2
+
1
8
u
9
4
2u
3
2u + 1
(ii) Obstruction class = 1
(iii) Cusp Shapes = 0
7
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
4
, c
5
c
10
u
4
2u
3
+ 3u
2
+ 4u 4
c
2
, c
11
u
4
2u
3
+ 17u
2
+ 40u + 16
c
3
, c
7
(u
2
+ 4u + 2)
2
c
6
, c
9
(u
2
+ 2u 1)
2
c
8
(u
2
6u + 1)
2
8
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
4
, c
5
c
10
y
4
+ 2y
3
+ 17y
2
40y + 16
c
2
, c
11
y
4
+ 30y
3
+ 481y
2
1056y + 256
c
3
, c
7
(y
2
12y + 4)
2
c
6
, c
9
(y
2
6y + 1)
2
c
8
(y
2
34y + 1)
2
9
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
2
1(vol +
1CS) Cusp shape
u = 1.14055
a = 0.825724
b = 0.585786
c = 0.876768
d = 0.414214
2.46740 0
u = 0.726339
a = 2.36126
b = 0.585786
c = 1.37677
d = 0.414214
2.46740 0
u = 1.20711 + 1.83612I
a = 2.76777 + 0.53779I
b = 3.41421
c = 0.250000 0.380272I
d = 2.41421
17.2718 0
u = 1.20711 1.83612I
a = 2.76777 0.53779I
b = 3.41421
c = 0.250000 + 0.380272I
d = 2.41421
17.2718 0
10
III. I
u
3
= hd, c + 1, b, a + 1, u + 1i
(i) Arc colorings
a
2
=
0
1
a
4
=
1
0
a
5
=
1
1
a
1
=
1
1
a
8
=
1
0
a
3
=
1
0
a
7
=
1
0
a
10
=
1
0
a
9
=
1
0
a
11
=
2
1
a
6
=
1
0
a
6
=
1
0
(ii) Obstruction class = 1
(iii) Cusp Shapes = 12
11
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
5
u 1
c
2
, c
4
, c
10
c
11
u + 1
c
3
, c
6
, c
7
c
8
, c
9
u
12
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
2
, c
4
c
5
, c
10
, c
11
y 1
c
3
, c
6
, c
7
c
8
, c
9
y
13
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
3
1(vol +
1CS) Cusp shape
u = 1.00000
a = 1.00000
b = 0
c = 1.00000
d = 0
3.28987 12.0000
14
IV. I
u
4
= hd + 1, c + 1, b, a 1, u + 1i
(i) Arc colorings
a
2
=
0
1
a
4
=
1
0
a
5
=
1
1
a
1
=
1
1
a
8
=
1
0
a
3
=
1
0
a
7
=
1
0
a
10
=
1
1
a
9
=
0
1
a
11
=
1
1
a
6
=
1
1
a
6
=
1
1
(ii) Obstruction class = 1
(iii) Cusp Shapes = 0
15
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
9
u 1
c
2
, c
4
, c
6
c
8
u + 1
c
3
, c
5
, c
7
c
10
, c
11
u
16
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
2
, c
4
c
6
, c
8
, c
9
y 1
c
3
, c
5
, c
7
c
10
, c
11
y
17
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
4
1(vol +
1CS) Cusp shape
u = 1.00000
a = 1.00000
b = 0
c = 1.00000
d = 1.00000
0 0
18
V. I
u
5
= hd c 1, ca + a + 1, b, u + 1i
(i) Arc colorings
a
2
=
0
1
a
4
=
1
0
a
5
=
1
1
a
1
=
1
1
a
8
=
a
0
a
3
=
1
0
a
7
=
a
0
a
10
=
c
c + 1
a
9
=
c + a
c + 1
a
11
=
c 1
c
a
6
=
c
c + 1
a
6
=
c
c + 1
(ii) Obstruction class = 1
(iii) Cusp Shapes = c
2
a
2
2c 5
(iv) u-Polynomials at the component : It cannot be defined for a positive
dimension component.
(v) Riley Polynomials at the component : It cannot be defined for a positive
dimension component.
19
(iv) Complex Volumes and Cusp Shapes
Solution to I
u
5
1(vol +
1CS) Cusp shape
u = ···
a = ···
b = ···
c = ···
d = ···
1.64493 5.89563 + 0.16586I
20
VI. I
v
1
= hc, d + 1, b, a 1, v 1i
(i) Arc colorings
a
2
=
1
0
a
4
=
1
0
a
5
=
1
0
a
1
=
1
0
a
8
=
1
0
a
3
=
1
0
a
7
=
1
0
a
10
=
0
1
a
9
=
1
1
a
11
=
1
1
a
6
=
0
1
a
6
=
0
1
(ii) Obstruction class = 1
(iii) Cusp Shapes = 0
21
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
2
, c
3
c
4
, c
7
u
c
5
, c
6
, c
8
c
11
u + 1
c
9
, c
10
u 1
22
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
2
, c
3
c
4
, c
7
y
c
5
, c
6
, c
8
c
9
, c
10
, c
11
y 1
23
(vi) Complex Volumes and Cusp Shapes
Solutions to I
v
1
1(vol +
1CS) Cusp shape
v = 1.00000
a = 1.00000
b = 0
c = 0
d = 1.00000
0 0
24
VII. u-Polynomials
Crossings u-Polynomials at each crossing
c
1
u(u 1)
2
(u
4
2u
3
+ 3u
2
+ 4u 4)
· (u
7
3u
6
+ 5u
5
3u
4
u
3
+ 7u
2
+ 3u 1)
c
2
, c
11
u(u + 1)
2
(u
4
2u
3
+ 17u
2
+ 40u + 16)
· (u
7
u
6
+ 5u
5
29u
4
+ 67u
3
+ 61u
2
+ 23u + 1)
c
3
, c
7
u
3
(u
2
+ 4u + 2)
2
(u
7
6u
5
+ 4u
4
+ 32u
3
12u
2
+ 16u 8)
c
4
u(u + 1)
2
(u
4
2u
3
+ 3u
2
+ 4u 4)
· (u
7
3u
6
+ 5u
5
3u
4
u
3
+ 7u
2
+ 3u 1)
c
5
, c
10
u(u 1)(u + 1)(u
4
2u
3
+ 3u
2
+ 4u 4)
· (u
7
3u
6
+ 5u
5
3u
4
u
3
+ 7u
2
+ 3u 1)
c
6
u(u + 1)
2
(u
2
+ 2u 1)
2
(u
7
+ u
6
4u
5
+ 15u
3
+ 3u
2
8u 4)
c
8
u(u + 1)
2
(u
2
6u + 1)
2
· (u
7
9u
6
+ 46u
5
142u
4
+ 297u
3
249u
2
+ 88u 16)
c
9
u(u 1)
2
(u
2
+ 2u 1)
2
(u
7
+ u
6
4u
5
+ 15u
3
+ 3u
2
8u 4)
25
VIII. Riley Polynomials
Crossings Riley Polynomials at each crossing
c
1
, c
4
, c
5
c
10
y(y 1)
2
(y
4
+ 2y
3
+ 17y
2
40y + 16)
· (y
7
+ y
6
+ 5y
5
+ 29y
4
+ 67y
3
61y
2
+ 23y 1)
c
2
, c
11
y(y 1)
2
(y
4
+ 30y
3
+ 481y
2
1056y + 256)
· (y
7
+ 9y
6
+ 101y
5
3y
4
+ 8259y
3
581y
2
+ 407y 1)
c
3
, c
7
y
3
(y
2
12y + 4)
2
· (y
7
12y
6
+ 100y
5
368y
4
+ 928y
3
+ 944y
2
+ 64y 64)
c
6
, c
9
y(y 1)
2
(y
2
6y + 1)
2
· (y
7
9y
6
+ 46y
5
142y
4
+ 297y
3
249y
2
+ 88y 16)
c
8
y(y 1)
2
(y
2
34y + 1)
2
· (y
7
+ 11y
6
+ 154y
5
+ 2854y
4
+ 25301y
3
14273y
2
224y 256)
26