9
33
(K9a
11
)
A knot diagram
1
Linearized knot diagam
8 9 7 3 2 4 1 6 5
Solving Sequence
3,7
4
5,9
1 2 6 8
c
3
c
4
c
9
c
2
c
6
c
8
c
1
, c
5
, c
7
Ideals for irreducible components
2
of X
par
I
u
1
= h523552400u
29
519151600u
28
+ ··· + 6282411349b 519170884,
571526124u
29
+ 47533644u
28
+ ··· + 6282411349a + 20413019584, u
30
u
29
+ ··· 3u + 1i
* 1 irreducible components of dim
C
= 0, with total 30 representations.
1
The image of knot diagram is generated by the software Draw programme developed by An-
drew Bartholomew(http://www.layer8.co.uk/maths/draw/index.htm#Running-draw), where we modi-
fied some parts for our purpose(https://github.com/CATsTAILs/LinksPainter).
2
All coefficients of polynomials are rational numbers. But the coefficients are sometimes approximated
in decimal forms when there is not enough margin.
1
I.
I
u
1
= h5.24 × 10
8
u
29
5.19 × 10
8
u
28
+ · · · + 6.28 × 10
9
b 5.19 × 10
8
, 5.72 ×
10
8
u
29
+4.75×10
7
u
28
+· · ·+6.28× 10
9
a+2.04×10
10
, u
30
u
29
+· · ·3u + 1i
(i) Arc colorings
a
3
=
1
0
a
7
=
0
u
a
4
=
1
u
2
a
5
=
u
2
+ 1
u
2
a
9
=
0.0909724u
29
0.00756615u
28
+ ··· + 2.67520u 3.24923
0.0833362u
29
+ 0.0826357u
28
+ ··· + 1.59305u + 0.0826388
a
1
=
0.816944u
29
0.800274u
28
+ ··· + 4.33394u 3.18861
0.816587u
29
+ 0.821929u
28
+ ··· + 1.76785u + 0.0219457
a
2
=
0.830556u
29
0.00273693u
28
+ ··· 3.66064u + 0.113929
0.833293u
29
0.830507u
28
+ ··· + 2.37774u 0.830556
a
6
=
u
u
3
+ u
a
8
=
0.732222u
29
0.798905u
28
+ ··· + 2.66425u 3.24557
0.733373u
29
+ 0.728883u
28
+ ··· + 2.69552u 0.0711119
a
8
=
0.732222u
29
0.798905u
28
+ ··· + 2.66425u 3.24557
0.733373u
29
+ 0.728883u
28
+ ··· + 2.69552u 0.0711119
(ii) Obstruction class = 1
(iii) Cusp Shapes =
19978037336
6282411349
u
29
+
14950008300
6282411349
u
28
+ ···+
24593576724
6282411349
u
28775538078
6282411349
2
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
7
u
30
u
29
+ ··· 5u + 1
c
2
u
30
+ 5u
29
+ ··· + u + 1
c
3
, c
6
u
30
+ u
29
+ ··· + 3u + 1
c
4
u
30
+ 13u
29
+ ··· + 3u + 1
c
5
u
30
+ 3u
29
+ ··· + u + 1
c
8
u
30
3u
29
+ ··· 9u + 1
c
9
u
30
u
29
+ ··· + 11u + 1
3
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
7
y
30
19y
29
+ ··· 5y + 1
c
2
y
30
3y
29
+ ··· 5y + 1
c
3
, c
6
y
30
+ 13y
29
+ ··· + 3y + 1
c
4
y
30
+ 9y
29
+ ··· + 39y + 1
c
5
y
30
+ 5y
29
+ ··· + 3y + 1
c
8
y
30
27y
29
+ ··· + 11y + 1
c
9
y
30
23y
29
+ ··· 9y + 1
4
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.907923 + 0.426568I
a = 1.169900 + 0.764529I
b = 1.065260 0.854723I
0.60287 7.55963I 1.09191 + 4.94493I
u = 0.907923 0.426568I
a = 1.169900 0.764529I
b = 1.065260 + 0.854723I
0.60287 + 7.55963I 1.09191 4.94493I
u = 0.365761 + 0.979876I
a = 1.59795 + 1.33270I
b = 1.43354 + 0.57946I
4.52085 + 1.19841I 7.97414 1.50646I
u = 0.365761 0.979876I
a = 1.59795 1.33270I
b = 1.43354 0.57946I
4.52085 1.19841I 7.97414 + 1.50646I
u = 0.485323 + 0.928263I
a = 1.61933 1.81589I
b = 0.365965 0.331561I
1.86283 2.41995I 7.1505 13.4441I
u = 0.485323 0.928263I
a = 1.61933 + 1.81589I
b = 0.365965 + 0.331561I
1.86283 + 2.41995I 7.1505 + 13.4441I
u = 0.702308 + 0.543288I
a = 1.12249 1.09131I
b = 1.170130 + 0.757580I
2.66519 2.12888I 4.79788 + 2.27450I
u = 0.702308 0.543288I
a = 1.12249 + 1.09131I
b = 1.170130 0.757580I
2.66519 + 2.12888I 4.79788 2.27450I
u = 0.630570 + 0.920314I
a = 1.078230 0.484581I
b = 0.527369 0.255959I
0.59733 2.56045I 2.74559 + 1.69203I
u = 0.630570 0.920314I
a = 1.078230 + 0.484581I
b = 0.527369 + 0.255959I
0.59733 + 2.56045I 2.74559 1.69203I
5
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.419790 + 0.765608I
a = 0.38715 + 1.97907I
b = 0.071716 + 0.565767I
1.28380 1.43143I 4.72992 + 7.90920I
u = 0.419790 0.765608I
a = 0.38715 1.97907I
b = 0.071716 0.565767I
1.28380 + 1.43143I 4.72992 7.90920I
u = 0.488147 + 1.019990I
a = 0.469424 + 0.779563I
b = 0.91649 1.42667I
3.68107 + 4.90989I 5.62064 7.63658I
u = 0.488147 1.019990I
a = 0.469424 0.779563I
b = 0.91649 + 1.42667I
3.68107 4.90989I 5.62064 + 7.63658I
u = 0.874083 + 0.729953I
a = 0.810701 0.043239I
b = 0.692011 0.163163I
0.99971 3.02182I 5.70717 + 7.15965I
u = 0.874083 0.729953I
a = 0.810701 + 0.043239I
b = 0.692011 + 0.163163I
0.99971 + 3.02182I 5.70717 7.15965I
u = 0.104954 + 0.846587I
a = 1.013570 + 0.508000I
b = 0.214087 + 1.056250I
1.84656 1.46172I 3.40911 + 4.12645I
u = 0.104954 0.846587I
a = 1.013570 0.508000I
b = 0.214087 1.056250I
1.84656 + 1.46172I 3.40911 4.12645I
u = 0.606261 + 1.034690I
a = 1.77136 0.83961I
b = 1.26265 1.09290I
1.20556 + 7.17470I 1.40394 7.73482I
u = 0.606261 1.034690I
a = 1.77136 + 0.83961I
b = 1.26265 + 1.09290I
1.20556 7.17470I 1.40394 + 7.73482I
6
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.739608 + 0.193899I
a = 0.491712 0.140537I
b = 0.711939 + 0.029552I
1.50909 0.09583I 7.75398 0.81660I
u = 0.739608 0.193899I
a = 0.491712 + 0.140537I
b = 0.711939 0.029552I
1.50909 + 0.09583I 7.75398 + 0.81660I
u = 0.066161 + 1.287720I
a = 0.153531 0.197790I
b = 0.644560 0.905239I
6.75726 4.69908I 5.55546 + 4.95856I
u = 0.066161 1.287720I
a = 0.153531 + 0.197790I
b = 0.644560 + 0.905239I
6.75726 + 4.69908I 5.55546 4.95856I
u = 0.651249 + 1.142680I
a = 1.59583 + 0.80518I
b = 1.15164 + 1.02775I
2.77714 + 13.28050I 1.34939 8.37714I
u = 0.651249 1.142680I
a = 1.59583 0.80518I
b = 1.15164 1.02775I
2.77714 13.28050I 1.34939 + 8.37714I
u = 0.611458 + 1.208770I
a = 0.528417 + 0.484423I
b = 0.632962 + 0.456161I
1.48004 5.18678I 0.12994 + 9.32507I
u = 0.611458 1.208770I
a = 0.528417 0.484423I
b = 0.632962 0.456161I
1.48004 + 5.18678I 0.12994 9.32507I
u = 0.368067 + 0.266876I
a = 2.50293 0.01848I
b = 0.498568 + 0.860476I
1.90369 1.10699I 1.88237 + 2.02123I
u = 0.368067 0.266876I
a = 2.50293 + 0.01848I
b = 0.498568 0.860476I
1.90369 + 1.10699I 1.88237 2.02123I
7
II. u-Polynomials
Crossings u-Polynomials at each crossing
c
1
, c
7
u
30
u
29
+ ··· 5u + 1
c
2
u
30
+ 5u
29
+ ··· + u + 1
c
3
, c
6
u
30
+ u
29
+ ··· + 3u + 1
c
4
u
30
+ 13u
29
+ ··· + 3u + 1
c
5
u
30
+ 3u
29
+ ··· + u + 1
c
8
u
30
3u
29
+ ··· 9u + 1
c
9
u
30
u
29
+ ··· + 11u + 1
8
III. Riley Polynomials
Crossings Riley Polynomials at each crossing
c
1
, c
7
y
30
19y
29
+ ··· 5y + 1
c
2
y
30
3y
29
+ ··· 5y + 1
c
3
, c
6
y
30
+ 13y
29
+ ··· + 3y + 1
c
4
y
30
+ 9y
29
+ ··· + 39y + 1
c
5
y
30
+ 5y
29
+ ··· + 3y + 1
c
8
y
30
27y
29
+ ··· + 11y + 1
c
9
y
30
23y
29
+ ··· 9y + 1
9