11n
74
(K11n
74
)
A knot diagram
1
Linearized knot diagam
4 1 8 2 11 9 4 6 8 1 6
Solving Sequence
6,8 4,9 1,3
2 5 7 11 10
c
8
c
3
c
2
c
4
c
7
c
11
c
10
c
1
, c
5
, c
6
, c
9
Ideals for irreducible components
2
of X
par
I
u
1
= h−u
4
+ 2u
3
− 2u
2
+ 2d + 1, −u
6
+ 3u
5
− 5u
4
+ 3u
3
+ 2c − 6u − 4, u
3
− u
2
+ 2b + u + 1,
− 2u
6
+ 5u
5
− 7u
4
+ 6u
2
+ 4a − 13u − 13, u
7
− 3u
6
+ 5u
5
− 3u
4
− u
3
+ 7u
2
+ 3u − 1i
I
u
2
= hu
3
+ 4d − u − 2, 3u
3
− 4u
2
+ 8c + 9u + 18, b + u − 1, −u
3
+ 8a − 3u − 2, u
4
− 2u
3
+ 3u
2
+ 4u − 4i
I
u
3
= hd, c + 1, b − 1, a, u + 1i
I
u
4
= hd, c − 1, b, a − 1, u + 1i
I
u
5
= hd, cb + 1, a − 1, u + 1i
I
v
1
= ha, d, c − 1, b + 1, v − 1i
* 5 irreducible components of dim
C
= 0, with total 14 representations.
* 1 irreducible components of dim
C
= 1
1
The image of knot diagram is generated by the software “Draw programme” developed by An-
drew Bartholomew(http://www.layer8.co.uk/maths/draw/index.htm#Running-draw), where we modi-
fied some parts for our purpose(https://github.com/CATsTAILs/LinksPainter).
2
All coefficients of polynomials are rational numbers. But the coefficients are sometimes approximated
in decimal forms when there is not enough margin.
1