11n
75
(K11n
75
)
A knot diagram
1
Linearized knot diagam
4 1 8 2 11 9 4 10 7 1 6
Solving Sequence
4,7
8
1,3
2
5,10
9 6 11
c
7
c
3
c
2
c
4
c
9
c
6
c
11
c
1
, c
5
, c
8
, c
10
Ideals for irreducible components
2
of X
par
I
u
1
= h563u
12
+ 528u
11
+ ··· + 40878d + 8114, 15485u
12
+ 31932u
11
+ ··· + 490536c − 416896,
19430u
12
+ 31239u
11
+ ··· + 245268b + 104720, 1958u
12
+ 5628u
11
+ ··· + 81756a − 64396,
u
13
+ 2u
12
+ 5u
11
+ 6u
10
+ 6u
9
+ 6u
8
− u
7
− 4u
6
− 10u
5
− 12u
4
+ 24u
3
− 4u
2
+ 8i
I
u
2
= h−u
4
c + 2u
3
c − 4u
2
c + 3cu + u
2
+ d − 2c − u + 2,
3u
4
c − 9u
3
c − u
4
+ 16u
2
c + 3u
3
+ 2c
2
− 17cu − 6u
2
+ 4c + 7u − 2, u
2
+ b − u + 1,
− u
4
+ 3u
3
− 6u
2
+ 2a + 5u − 2, u
5
− 3u
4
+ 6u
3
− 7u
2
+ 4u − 2i
I
u
3
= hu
2
+ d + u + 1, c + u, −au + u
2
+ b + u + 1, u
2
a + a
2
− u
2
+ a − 1, u
3
+ u
2
+ 2u + 1i
I
u
4
= h−au + d, −2u
2
a − au + u
2
+ c − 3a + 1, −au + u
2
+ b + u + 1, u
2
a + a
2
− u
2
+ a − 1, u
3
+ u
2
+ 2u + 1i
I
u
5
= hu
2
+ d + u + 1, c + u, u
2
+ b + u + 3, −u
2
+ a − 1, u
3
+ u
2
+ 2u + 1i
I
v
1
= hc, d + 1, b, a + 1, v + 1i
I
v
2
= ha, d, c − 1, b + 1, v − 1i
I
v
3
= ha, d + 1, c − a, b + 1, v − 1i
I
v
4
= hc, d + 1, −av + c − v, bv + 1i
* 8 irreducible components of dim
C
= 0, with total 41 representations.
* 1 irreducible components of dim
C
= 1
1
The image of knot diagram is generated by the software “Draw programme” developed by An-
drew Bartholomew(http://www.layer8.co.uk/maths/draw/index.htm#Running-draw), where we modi-
fied some parts for our purpose(https://github.com/CATsTAILs/LinksPainter).
2
All coefficients of polynomials are rational numbers. But the coefficients are sometimes approximated
in decimal forms when there is not enough margin.
1