11n
76
(K11n
76
)
A knot diagram
1
Linearized knot diagam
4 1 8 2 11 9 3 6 7 1 6
Solving Sequence
6,8
9
4,7 1,3
2 11 5 10
c
8
c
6
c
3
c
2
c
11
c
5
c
10
c
1
, c
4
, c
7
, c
9
Ideals for irreducible components
2
of X
par
I
u
1
= hu
9
+ u
8
− 6u
7
− 4u
6
+ 12u
5
+ u
4
− 8u
3
+ 8u
2
+ 2d − u,
u
10
+ 2u
9
− 6u
8
− 12u
7
+ 14u
6
+ 21u
5
− 21u
4
− 5u
3
+ 22u
2
+ 2c − 10u,
u
10
+ 2u
9
− 5u
8
− 10u
7
+ 8u
6
+ 11u
5
− 9u
4
+ 4u
3
+ 13u
2
+ 4b + u, a − 1,
u
11
+ 2u
10
− 6u
9
− 12u
8
+ 13u
7
+ 21u
6
− 17u
5
− 7u
4
+ 18u
3
− 3u
2
− u − 1i
I
u
2
= h3u
7
+ 5u
6
− 3u
5
− u
4
+ 3u
3
− 10u
2
+ 4d − 9u − 2, 7u
7
+ 9u
6
− 15u
5
− u
4
+ 15u
3
− 34u
2
+ 8c − 9u + 14,
u
7
+ u
6
− u
5
+ u
4
+ u
3
− 4u
2
+ 2b − 3u, −u
7
− 3u
6
− 3u
5
+ 3u
4
+ 3u
3
− 6u
2
+ 8a + 7u + 18,
u
8
+ u
7
− 3u
6
− u
5
+ 3u
4
− 4u
3
− 3u
2
+ 4u + 4i
I
u
3
= hd + u, c, −au + b + a + 1, a
2
+ a − u − 1, u
2
+ u − 1i
I
u
4
= hu
3
+ d − u + 1, u
3
− u
2
+ c, u
3
− u
2
+ b − u + 2, −u
3
+ a − 1, u
4
− u
3
+ 2u − 1i
I
u
5
= hd + u, c, b + u + 1, a − 1, u
2
+ u − 1i
I
u
6
= hd, c + 1, b, a + 1, u − 1i
I
u
7
= hd, c − 1, b + 1, a, u − 1i
I
u
8
= hd, cb + 1, a + 1, u − 1i
I
v
1
= ha, d, c − 1, b + 1, v − 1i
* 8 irreducible components of dim
C
= 0, with total 32 representations.
* 1 irreducible components of dim
C
= 1
1
The image of knot diagram is generated by the software “Draw programme” developed by An-
drew Bartholomew(http://www.layer8.co.uk/maths/draw/index.htm#Running-draw), where we modi-
fied some parts for our purpose(https://github.com/CATsTAILs/LinksPainter).
2
All coefficients of polynomials are rational numbers. But the coefficients are sometimes approximated
1