11n
80
(K11n
80
)
A knot diagram
1
Linearized knot diagam
5 1 7 2 4 10 3 11 1 7 9
Solving Sequence
2,4
5
6,10
7 1 3 8 9 11
c
4
c
5
c
6
c
1
c
3
c
7
c
9
c
11
c
2
, c
8
, c
10
Ideals for irreducible components
2
of X
par
I
u
1
= h35u
14
160u
13
+ ··· + 2098b 1482, 1803u
14
7193u
13
+ ··· + 2098a 16837,
u
15
+ 4u
14
+ ··· + 12u + 1i
I
u
2
= h−u
2
+ b u 1, u
3
u
2
+ a u + 1, u
4
+ u
3
+ u
2
+ 1i
I
u
3
= hb
2
bu + b + u, a + u, u
2
u + 1i
* 3 irreducible components of dim
C
= 0, with total 23 representations.
1
The image of knot diagram is generated by the software Draw programme developed by An-
drew Bartholomew(http://www.layer8.co.uk/maths/draw/index.htm#Running-draw), where we modi-
fied some parts for our purpose(https://github.com/CATsTAILs/LinksPainter).
2
All coefficients of polynomials are rational numbers. But the coefficients are sometimes approximated
in decimal forms when there is not enough margin.
1
I. I
u
1
= h35u
14
160u
13
+ · · · + 2098b 1482, 1803u
14
7193u
13
+ · · · +
2098a 16837, u
15
+ 4u
14
+ · · · + 12u + 1i
(i) Arc colorings
a
2
=
0
u
a
4
=
1
0
a
5
=
1
u
2
a
6
=
u
2
+ 1
u
2
a
10
=
0.859390u
14
+ 3.42850u
13
+ ··· + 8.95853u + 8.02526
0.0166826u
14
+ 0.0762631u
13
+ ··· + 2.44423u + 0.706387
a
7
=
0.477121u
14
1.81888u
13
+ ··· 5.69495u 3.69733
0.0319352u
14
+ 0.211153u
13
+ ··· 0.407531u 0.337941
a
1
=
u
u
3
+ u
a
3
=
u
3
u
5
+ u
3
+ u
a
8
=
0.277407u
14
0.946139u
13
+ ··· 3.19876u 3.48236
0.167779u
14
+ 0.661582u
13
+ ··· 1.09628u 0.447092
a
9
=
0.715443u
14
+ 2.87226u
13
+ ··· + 8.20591u + 7.89180
0.00905624u
14
+ 0.0300286u
13
+ ··· + 3.28742u + 0.859390
a
11
=
0.782173u
14
+ 3.06721u
13
+ ··· + 7.92898u + 6.06625
0.0619638u
14
0.0738799u
13
+ ··· + 1.00715u + 0.409438
a
11
=
0.782173u
14
+ 3.06721u
13
+ ··· + 7.92898u + 6.06625
0.0619638u
14
0.0738799u
13
+ ··· + 1.00715u + 0.409438
(ii) Obstruction class = 1
(iii) Cusp Shapes =
713
2098
u
14
2585
2098
u
13
+ ··· +
20215
2098
u +
10090
1049
2
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
4
u
15
+ 4u
14
+ ··· + 12u + 1
c
2
, c
5
u
15
+ 10u
14
+ ··· + 112u 1
c
3
, c
7
u
15
2u
14
+ ··· + 16u 16
c
6
, c
10
u
15
3u
14
+ ··· 24u 16
c
8
, c
9
, c
11
u
15
+ 7u
14
+ ··· 16u 1
3
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
4
y
15
+ 10y
14
+ ··· + 112y 1
c
2
, c
5
y
15
6y
14
+ ··· + 13488y 1
c
3
, c
7
y
15
20y
14
+ ··· + 128y 256
c
6
, c
10
y
15
+ 21y
14
+ ··· 1984y 256
c
8
, c
9
, c
11
y
15
3y
14
+ ··· + 134y 1
4
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.443471 + 0.899923I
a = 2.22456 0.69076I
b = 0.00537 + 2.93789I
1.31612 + 1.82919I 23.9935 13.4254I
u = 0.443471 0.899923I
a = 2.22456 + 0.69076I
b = 0.00537 2.93789I
1.31612 1.82919I 23.9935 + 13.4254I
u = 1.154120 + 0.257445I
a = 0.114455 1.265520I
b = 0.21776 + 1.65198I
5.23991 + 4.29122I 5.74651 1.92061I
u = 1.154120 0.257445I
a = 0.114455 + 1.265520I
b = 0.21776 1.65198I
5.23991 4.29122I 5.74651 + 1.92061I
u = 0.707815 + 0.947595I
a = 0.362571 0.587039I
b = 0.068426 0.205683I
9.44393 2.71266I 11.43593 + 3.34052I
u = 0.707815 0.947595I
a = 0.362571 + 0.587039I
b = 0.068426 + 0.205683I
9.44393 + 2.71266I 11.43593 3.34052I
u = 0.416218 + 0.666363I
a = 0.168507 0.746645I
b = 0.225041 + 0.497206I
0.075833 + 1.377120I 0.42484 4.74084I
u = 0.416218 0.666363I
a = 0.168507 + 0.746645I
b = 0.225041 0.497206I
0.075833 1.377120I 0.42484 + 4.74084I
u = 0.136912 + 1.276840I
a = 1.156530 0.039261I
b = 0.148725 + 0.753403I
2.05262 + 0.52363I 2.28909 0.30141I
u = 0.136912 1.276840I
a = 1.156530 + 0.039261I
b = 0.148725 0.753403I
2.05262 0.52363I 2.28909 + 0.30141I
5
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.68964 + 1.30605I
a = 1.367780 0.217281I
b = 0.35945 + 1.80414I
8.47013 10.83430I 4.46568 + 4.98924I
u = 0.68964 1.30605I
a = 1.367780 + 0.217281I
b = 0.35945 1.80414I
8.47013 + 10.83430I 4.46568 4.98924I
u = 0.39863 + 1.51864I
a = 0.749856 + 0.006232I
b = 0.03559 1.70713I
11.10030 1.26356I 2.58190 + 0.63912I
u = 0.39863 1.51864I
a = 0.749856 0.006232I
b = 0.03559 + 1.70713I
11.10030 + 1.26356I 2.58190 0.63912I
u = 0.0927870
a = 7.36713
b = 0.512405
1.10369 8.82440
6
II. I
u
2
= h−u
2
+ b u 1, u
3
u
2
+ a u + 1, u
4
+ u
3
+ u
2
+ 1i
(i) Arc colorings
a
2
=
0
u
a
4
=
1
0
a
5
=
1
u
2
a
6
=
u
2
+ 1
u
2
a
10
=
u
3
+ u
2
+ u 1
u
2
+ u + 1
a
7
=
u
2
+ 1
u
2
a
1
=
u
u
3
+ u
a
3
=
u
3
u
3
+ u
2
+ 1
a
8
=
u
u
3
u
a
9
=
u
3
+ u
2
+ 2u 1
u
3
+ u
2
+ 1
a
11
=
u
3
+ u
2
+ u 1
u
2
+ u + 1
a
11
=
u
3
+ u
2
+ u 1
u
2
+ u + 1
(ii) Obstruction class = 1
(iii) Cusp Shapes = 3u
3
5u
2
+ 8
7
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
u
4
u
3
+ u
2
+ 1
c
2
, c
5
, c
7
u
4
+ u
3
+ 3u
2
+ 2u + 1
c
3
u
4
u
3
+ 3u
2
2u + 1
c
4
u
4
+ u
3
+ u
2
+ 1
c
6
, c
10
u
4
c
8
, c
9
(u + 1)
4
c
11
(u 1)
4
8
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
4
y
4
+ y
3
+ 3y
2
+ 2y + 1
c
2
, c
3
, c
5
c
7
y
4
+ 5y
3
+ 7y
2
+ 2y + 1
c
6
, c
10
y
4
c
8
, c
9
, c
11
(y 1)
4
9
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
2
1(vol +
1CS) Cusp shape
u = 0.351808 + 0.720342I
a = 1.54742 + 1.12087I
b = 0.95668 + 1.22719I
1.43393 + 1.41510I 11.48794 2.21528I
u = 0.351808 0.720342I
a = 1.54742 1.12087I
b = 0.95668 1.22719I
1.43393 1.41510I 11.48794 + 2.21528I
u = 0.851808 + 0.911292I
a = 0.452576 + 0.585652I
b = 0.043315 0.641200I
8.43568 3.16396I 4.01206 + 4.08190I
u = 0.851808 0.911292I
a = 0.452576 0.585652I
b = 0.043315 + 0.641200I
8.43568 + 3.16396I 4.01206 4.08190I
10
III. I
u
3
= hb
2
bu + b + u, a + u, u
2
u + 1i
(i) Arc colorings
a
2
=
0
u
a
4
=
1
0
a
5
=
1
u + 1
a
6
=
u
u + 1
a
10
=
u
b
a
7
=
bu b + 2u
0
a
1
=
u
u 1
a
3
=
1
0
a
8
=
bu b + 2u
0
a
9
=
bu + b 2u
u 1
a
11
=
2bu 2b + 2u
b
a
11
=
2bu 2b + 2u
b
(ii) Obstruction class = 1
(iii) Cusp Shapes = 3bu 6b u + 5
11
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
2
, c
5
(u
2
+ u + 1)
2
c
3
, c
7
u
4
c
4
(u
2
u + 1)
2
c
6
, c
8
, c
9
(u
2
u 1)
2
c
10
, c
11
(u
2
+ u 1)
2
12
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
2
, c
4
c
5
(y
2
+ y + 1)
2
c
3
, c
7
y
4
c
6
, c
8
, c
9
c
10
, c
11
(y
2
3y + 1)
2
13
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
3
1(vol +
1CS) Cusp shape
u = 0.500000 + 0.866025I
a = 0.500000 0.866025I
b = 0.309017 0.535233I
8.88264 + 2.02988I 4.50000 + 2.34537I
u = 0.500000 + 0.866025I
a = 0.500000 0.866025I
b = 0.80902 + 1.40126I
0.98696 + 2.02988I 4.50000 9.27358I
u = 0.500000 0.866025I
a = 0.500000 + 0.866025I
b = 0.309017 + 0.535233I
8.88264 2.02988I 4.50000 2.34537I
u = 0.500000 0.866025I
a = 0.500000 + 0.866025I
b = 0.80902 1.40126I
0.98696 2.02988I 4.50000 + 9.27358I
14
IV. u-Polynomials
Crossings u-Polynomials at each crossing
c
1
((u
2
+ u + 1)
2
)(u
4
u
3
+ u
2
+ 1)(u
15
+ 4u
14
+ ··· + 12u + 1)
c
2
, c
5
((u
2
+ u + 1)
2
)(u
4
+ u
3
+ 3u
2
+ 2u + 1)(u
15
+ 10u
14
+ ··· + 112u 1)
c
3
u
4
(u
4
u
3
+ 3u
2
2u + 1)(u
15
2u
14
+ ··· + 16u 16)
c
4
((u
2
u + 1)
2
)(u
4
+ u
3
+ u
2
+ 1)(u
15
+ 4u
14
+ ··· + 12u + 1)
c
6
u
4
(u
2
u 1)
2
(u
15
3u
14
+ ··· 24u 16)
c
7
u
4
(u
4
+ u
3
+ 3u
2
+ 2u + 1)(u
15
2u
14
+ ··· + 16u 16)
c
8
, c
9
((u + 1)
4
)(u
2
u 1)
2
(u
15
+ 7u
14
+ ··· 16u 1)
c
10
u
4
(u
2
+ u 1)
2
(u
15
3u
14
+ ··· 24u 16)
c
11
((u 1)
4
)(u
2
+ u 1)
2
(u
15
+ 7u
14
+ ··· 16u 1)
15
V. Riley Polynomials
Crossings Riley Polynomials at each crossing
c
1
, c
4
((y
2
+ y + 1)
2
)(y
4
+ y
3
+ 3y
2
+ 2y + 1)(y
15
+ 10y
14
+ ··· + 112y 1)
c
2
, c
5
((y
2
+ y + 1)
2
)(y
4
+ 5y
3
+ ··· + 2y + 1)(y
15
6y
14
+ ··· + 13488y 1)
c
3
, c
7
y
4
(y
4
+ 5y
3
+ ··· + 2y + 1)(y
15
20y
14
+ ··· + 128y 256)
c
6
, c
10
y
4
(y
2
3y + 1)
2
(y
15
+ 21y
14
+ ··· 1984y 256)
c
8
, c
9
, c
11
((y 1)
4
)(y
2
3y + 1)
2
(y
15
3y
14
+ ··· + 134y 1)
16