11n
81
(K11n
81
)
A knot diagram
1
Linearized knot diagam
4 1 9 2 11 1 10 4 7 8 6
Solving Sequence
1,4 2,6 7,9
3 8 11 5 10
c
1
c
6
c
3
c
8
c
11
c
5
c
10
c
2
, c
4
, c
7
, c
9
Ideals for irreducible components
2
of X
par
I
u
1
= h−u
3
+ u
2
+ 2d + 3u − 1, u
4
+ 2u
3
− 4u
2
+ 2c − 8u + 1, b − u, −u
4
− u
3
+ 3u
2
+ 2a + 3u,
u
5
+ u
4
− 4u
3
− 4u
2
+ 3u − 1i
I
u
2
= h−u
4
+ 2u
2
+ d − 2u, u
4
+ u
3
− 2u
2
+ c + 2, b − u, u
3
+ 2u
2
+ a − u − 1, u
5
+ 2u
4
− 2u
3
− 3u
2
+ 3u + 1i
I
u
3
= h−u
4
+ 2u
2
+ d − 2u, u
4
+ u
3
− 2u
2
+ c + 2, −u
4
− u
3
+ 2u
2
+ b + u − 1, −u
4
− 2u
3
+ 2u
2
+ a + 3u − 3,
u
5
+ 2u
4
− 2u
3
− 3u
2
+ 3u + 1i
I
u
4
= h−5u
4
+ 6u
3
− 3u
2
+ 4d − 9u + 14, 3u
4
− 2u
3
+ u
2
+ 8c + 3u − 10, u
4
− 2u
3
− u
2
+ 4b + 5u − 2,
u
4
− u
2
+ 4a + 3u, u
5
− u
3
+ 3u
2
− 4i
I
u
5
= hd + 1, c, b, a + 1, u − 1i
I
u
6
= hd + 1, c, b + 1, a + 1, u − 1i
I
u
7
= hda + d + 1, c, b + 1, u − 1i
I
v
1
= ha, d, c + 1, b − 1, v − 1i
* 7 irreducible components of dim
C
= 0, with total 23 representations.
* 1 irreducible components of dim
C
= 1
1
The image of knot diagram is generated by the software “Draw programme” developed by An-
drew Bartholomew(http://www.layer8.co.uk/maths/draw/index.htm#Running-draw), where we modi-
fied some parts for our purpose(https://github.com/CATsTAILs/LinksPainter).
2
All coefficients of polynomials are rational numbers. But the coefficients are sometimes approximated
in decimal forms when there is not enough margin.
1