11n
82
(K11n
82
)
A knot diagram
1
Linearized knot diagam
6 1 9 7 2 10 11 1 6 4 8
Solving Sequence
1,6
2
3,9
10 7 5 4 8 11
c
1
c
2
c
9
c
6
c
5
c
4
c
8
c
11
c
3
, c
7
, c
10
Ideals for irreducible components
2
of X
par
I
u
1
= h−30181087379u
14
63482369835u
13
+ ··· + 286209328348b 329512457510,
222459805170u
14
+ 486064128543u
13
+ ··· + 286209328348a + 3182822169919,
u
15
+ 2u
14
+ ··· + 10u 1i
I
u
2
= hb
2
2, a u 1, u
2
+ u + 1i
I
u
3
= hb, a + u + 1, u
2
+ u + 1i
* 3 irreducible components of dim
C
= 0, with total 21 representations.
1
The image of knot diagram is generated by the software Draw programme developed by An-
drew Bartholomew(http://www.layer8.co.uk/maths/draw/index.htm#Running-draw), where we modi-
fied some parts for our purpose(https://github.com/CATsTAILs/LinksPainter).
2
All coefficients of polynomials are rational numbers. But the coefficients are sometimes approximated
in decimal forms when there is not enough margin.
1
I. I
u
1
= h−3.02 × 10
10
u
14
6.35 × 10
10
u
13
+ · · · + 2.86 × 10
11
b 3.30 ×
10
11
, 2.22 × 10
11
u
14
+ 4.86 × 10
11
u
13
+ · · · + 2.86 × 10
11
a + 3.18 ×
10
12
, u
15
+ 2u
14
+ · · · + 10u 1i
(i) Arc colorings
a
1
=
1
0
a
6
=
0
u
a
2
=
1
u
2
a
3
=
u
2
+ 1
u
2
a
9
=
0.777263u
14
1.69828u
13
+ ··· 20.7871u 11.1206
0.105451u
14
+ 0.221804u
13
+ ··· + 3.04137u + 1.15130
a
10
=
0.777263u
14
1.69828u
13
+ ··· 20.7871u 11.1206
0.0983887u
14
+ 0.190365u
13
+ ··· + 2.38106u + 1.29506
a
7
=
1.21619u
14
+ 2.44009u
13
+ ··· + 22.7698u + 12.4895
0.0983778u
14
0.210858u
13
+ ··· 1.81717u 1.45285
a
5
=
u
u
3
+ u
a
4
=
1.42791u
14
2.95841u
13
+ ··· 31.0375u 14.0034
0.156497u
14
+ 0.304479u
13
+ ··· + 2.72370u + 1.69949
a
8
=
0.671811u
14
1.47648u
13
+ ··· 17.7458u 9.96931
0.105451u
14
+ 0.221804u
13
+ ··· + 3.04137u + 1.15130
a
11
=
1.29506u
14
+ 2.68850u
13
+ ··· + 27.7863u + 15.3316
0.150085u
14
0.291905u
13
+ ··· 3.03487u 1.79788
a
11
=
1.29506u
14
+ 2.68850u
13
+ ··· + 27.7863u + 15.3316
0.150085u
14
0.291905u
13
+ ··· 3.03487u 1.79788
(ii) Obstruction class = 1
(iii) Cusp Shapes
=
127706987601
286209328348
u
14
268342154629
286209328348
u
13
+ ···
2023089158227
286209328348
u
132460189755
71552332087
2
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
5
u
15
2u
14
+ ··· + 10u + 1
c
2
u
15
+ 26u
14
+ ··· + 130u 1
c
3
u
15
27u
13
+ ··· 294u + 181
c
4
u
15
+ 2u
14
+ ··· 26u 29
c
6
, c
9
u
15
3u
14
+ ··· + 11u + 7
c
7
, c
8
, c
11
u
15
+ u
14
+ ··· 12u + 4
c
10
u
15
+ 2u
14
+ ··· + 2u 1
3
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
5
y
15
+ 26y
14
+ ··· + 130y 1
c
2
y
15
70y
14
+ ··· + 19426y 1
c
3
y
15
54y
14
+ ··· + 330786y 32761
c
4
y
15
+ 18y
14
+ ··· 5646y 841
c
6
, c
9
y
15
+ y
14
+ ··· 61y 49
c
7
, c
8
, c
11
y
15
25y
14
+ ··· + 112y 16
c
10
y
15
+ 2y
14
+ ··· + 10y 1
4
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.803098 + 0.748670I
a = 0.646315 + 0.226464I
b = 0.574139 0.064590I
0.89161 2.83187I 3.17067 + 6.54660I
u = 0.803098 0.748670I
a = 0.646315 0.226464I
b = 0.574139 + 0.064590I
0.89161 + 2.83187I 3.17067 6.54660I
u = 0.289457 + 0.470166I
a = 1.237560 0.324915I
b = 0.565034 + 0.450274I
1.172960 0.777601I 6.04145 + 2.77158I
u = 0.289457 0.470166I
a = 1.237560 + 0.324915I
b = 0.565034 0.450274I
1.172960 + 0.777601I 6.04145 2.77158I
u = 0.231441 + 0.401782I
a = 1.51486 1.67785I
b = 0.280610 + 0.385572I
1.80414 1.09347I 2.23827 2.22165I
u = 0.231441 0.401782I
a = 1.51486 + 1.67785I
b = 0.280610 0.385572I
1.80414 + 1.09347I 2.23827 + 2.22165I
u = 0.31482 + 1.53771I
a = 0.672510 + 0.519039I
b = 1.36446 0.54656I
7.20728 4.71372I 5.60542 + 4.01319I
u = 0.31482 1.53771I
a = 0.672510 0.519039I
b = 1.36446 + 0.54656I
7.20728 + 4.71372I 5.60542 4.01319I
u = 0.70342 + 1.47150I
a = 0.520487 + 0.299718I
b = 1.49730 0.27028I
6.05090 1.57623I 5.49718 + 1.52700I
u = 0.70342 1.47150I
a = 0.520487 0.299718I
b = 1.49730 + 0.27028I
6.05090 + 1.57623I 5.49718 1.52700I
5
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.0846656
a = 13.3666
b = 1.46557
3.38897 2.51440
u = 0.44610 + 2.10573I
a = 0.766270 0.413924I
b = 1.95777 + 0.08885I
19.5760 + 1.0165I 5.21772 + 0.08752I
u = 0.44610 2.10573I
a = 0.766270 + 0.413924I
b = 1.95777 0.08885I
19.5760 1.0165I 5.21772 0.08752I
u = 0.35476 + 2.19036I
a = 0.628878 0.529570I
b = 1.88186 + 0.21032I
18.8095 8.6900I 4.44865 + 3.93161I
u = 0.35476 2.19036I
a = 0.628878 + 0.529570I
b = 1.88186 0.21032I
18.8095 + 8.6900I 4.44865 3.93161I
6
II. I
u
2
= hb
2
2, a u 1, u
2
+ u + 1i
(i) Arc colorings
a
1
=
1
0
a
6
=
0
u
a
2
=
1
u + 1
a
3
=
u
u + 1
a
9
=
u + 1
b
a
10
=
u + 1
b + u
a
7
=
u 1
b
a
5
=
u
u + 1
a
4
=
b u + 1
bu u + 1
a
8
=
b + u + 1
b
a
11
=
bu b 1
2
a
11
=
bu b 1
2
(ii) Obstruction class = 1
(iii) Cusp Shapes = 4u
7
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
2
, c
10
(u
2
+ u + 1)
2
c
3
u
4
2u
3
+ 5u
2
+ 2u + 1
c
4
u
4
+ 2u
3
+ 5u
2
2u + 1
c
5
(u
2
u + 1)
2
c
6
(u 1)
4
c
7
, c
8
, c
11
(u
2
2)
2
c
9
(u + 1)
4
8
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
2
, c
5
c
10
(y
2
+ y + 1)
2
c
3
, c
4
y
4
+ 6y
3
+ 35y
2
+ 6y + 1
c
6
, c
9
(y 1)
4
c
7
, c
8
, c
11
(y 2)
4
9
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
2
1(vol +
1CS) Cusp shape
u = 0.500000 + 0.866025I
a = 0.500000 + 0.866025I
b = 1.41421
3.28987 2.02988I 2.00000 + 3.46410I
u = 0.500000 + 0.866025I
a = 0.500000 + 0.866025I
b = 1.41421
3.28987 2.02988I 2.00000 + 3.46410I
u = 0.500000 0.866025I
a = 0.500000 0.866025I
b = 1.41421
3.28987 + 2.02988I 2.00000 3.46410I
u = 0.500000 0.866025I
a = 0.500000 0.866025I
b = 1.41421
3.28987 + 2.02988I 2.00000 3.46410I
10
III. I
u
3
= hb, a + u + 1, u
2
+ u + 1i
(i) Arc colorings
a
1
=
1
0
a
6
=
0
u
a
2
=
1
u + 1
a
3
=
u
u + 1
a
9
=
u 1
0
a
10
=
u 1
u
a
7
=
u 1
0
a
5
=
u
u + 1
a
4
=
u + 1
u + 1
a
8
=
u 1
0
a
11
=
1
0
a
11
=
1
0
(ii) Obstruction class = 1
(iii) Cusp Shapes = 4u + 2
11
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
2
, c
3
c
4
u
2
+ u + 1
c
5
, c
10
u
2
u + 1
c
6
(u + 1)
2
c
7
, c
8
, c
11
u
2
c
9
(u 1)
2
12
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
2
, c
3
c
4
, c
5
, c
10
y
2
+ y + 1
c
6
, c
9
(y 1)
2
c
7
, c
8
, c
11
y
2
13
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
3
1(vol +
1CS) Cusp shape
u = 0.500000 + 0.866025I
a = 0.500000 0.866025I
b = 0
1.64493 2.02988I 0. + 3.46410I
u = 0.500000 0.866025I
a = 0.500000 + 0.866025I
b = 0
1.64493 + 2.02988I 0. 3.46410I
14
IV. u-Polynomials
Crossings u-Polynomials at each crossing
c
1
((u
2
+ u + 1)
3
)(u
15
2u
14
+ ··· + 10u + 1)
c
2
((u
2
+ u + 1)
3
)(u
15
+ 26u
14
+ ··· + 130u 1)
c
3
(u
2
+ u + 1)(u
4
2u
3
+ ··· + 2u + 1)(u
15
27u
13
+ ··· 294u + 181)
c
4
(u
2
+ u + 1)(u
4
+ 2u
3
+ ··· 2u + 1)(u
15
+ 2u
14
+ ··· 26u 29)
c
5
((u
2
u + 1)
3
)(u
15
2u
14
+ ··· + 10u + 1)
c
6
((u 1)
4
)(u + 1)
2
(u
15
3u
14
+ ··· + 11u + 7)
c
7
, c
8
, c
11
u
2
(u
2
2)
2
(u
15
+ u
14
+ ··· 12u + 4)
c
9
((u 1)
2
)(u + 1)
4
(u
15
3u
14
+ ··· + 11u + 7)
c
10
(u
2
u + 1)(u
2
+ u + 1)
2
(u
15
+ 2u
14
+ ··· + 2u 1)
15
V. Riley Polynomials
Crossings Riley Polynomials at each crossing
c
1
, c
5
((y
2
+ y + 1)
3
)(y
15
+ 26y
14
+ ··· + 130y 1)
c
2
((y
2
+ y + 1)
3
)(y
15
70y
14
+ ··· + 19426y 1)
c
3
(y
2
+ y + 1)(y
4
+ 6y
3
+ 35y
2
+ 6y + 1)
· (y
15
54y
14
+ ··· + 330786y 32761)
c
4
(y
2
+ y + 1)(y
4
+ 6y
3
+ ··· + 6y + 1)(y
15
+ 18y
14
+ ··· 5646y 841)
c
6
, c
9
((y 1)
6
)(y
15
+ y
14
+ ··· 61y 49)
c
7
, c
8
, c
11
y
2
(y 2)
4
(y
15
25y
14
+ ··· + 112y 16)
c
10
((y
2
+ y + 1)
3
)(y
15
+ 2y
14
+ ··· + 10y 1)
16