9
34
(K9a
28
)
A knot diagram
1
Linearized knot diagam
7 9 8 2 3 4 1 6 5
Solving Sequence
2,7
1
5,8
4 3 6 9
c
1
c
7
c
4
c
3
c
6
c
9
c
2
, c
5
, c
8
Ideals for irreducible components
2
of X
par
I
u
1
= h−61u
16
298u
15
+ ··· + 43b + 351, 107u
16
319u
15
+ ··· + 172a 257,
u
17
+ 5u
16
+ ··· 21u 4i
I
u
2
= hu
10
a 2u
9
a + ··· + a 1, u
9
a u
10
+ ··· + a
2
+ 1,
u
11
3u
10
+ 8u
9
13u
8
+ 18u
7
20u
6
+ 18u
5
15u
4
+ 9u
3
5u
2
+ 2u 1i
I
u
3
= h−u
3
+ 2u
2
+ b 2u + 1, u
4
u
3
+ a + u 2, u
5
2u
4
+ 3u
3
3u
2
+ u 1i
* 3 irreducible components of dim
C
= 0, with total 44 representations.
1
The image of knot diagram is generated by the software Draw programme developed by An-
drew Bartholomew(http://www.layer8.co.uk/maths/draw/index.htm#Running-draw), where we modi-
fied some parts for our purpose(https://github.com/CATsTAILs/LinksPainter).
2
All coefficients of polynomials are rational numbers. But the coefficients are sometimes approximated
in decimal forms when there is not enough margin.
1
I. I
u
1
= h−61u
16
298u
15
+ · · · + 43b + 351, 107u
16
319u
15
+ · · · +
172a 257, u
17
+ 5u
16
+ · · · 21u 4i
(i) Arc colorings
a
2
=
1
0
a
7
=
0
u
a
1
=
1
u
2
a
5
=
0.622093u
16
+ 1.85465u
15
+ ··· + 5.02907u + 1.49419
1.41860u
16
+ 6.93023u
15
+ ··· 36.1860u 8.16279
a
8
=
u
u
3
+ u
a
4
=
2.04070u
16
+ 8.78488u
15
+ ··· 31.1570u 6.66860
1.41860u
16
+ 6.93023u
15
+ ··· 36.1860u 8.16279
a
3
=
0.901163u
16
+ 3.80814u
15
+ ··· 14.7616u 2.94767
0.720930u
16
+ 3.04651u
15
+ ··· 9.20930u 1.55814
a
6
=
3.56395u
16
14.4477u
15
+ ··· + 49.8895u + 13.1221
3.37209u
16
15.6047u
15
+ ··· + 62.7209u + 14.2558
a
9
=
0.843023u
16
4.40116u
15
+ ··· + 26.6802u + 7.56395
0.604651u
16
2.23256u
15
+ ··· + 18.0465u + 5.79070
a
9
=
0.843023u
16
4.40116u
15
+ ··· + 26.6802u + 7.56395
0.604651u
16
2.23256u
15
+ ··· + 18.0465u + 5.79070
(ii) Obstruction class = 1
(iii) Cusp Shapes =
441
43
u
16
+
1969
43
u
15
+ ···
7549
43
u
2042
43
2
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
7
u
17
+ 5u
16
+ ··· 21u 4
c
2
, c
8
u
17
+ u
16
+ ··· u 1
c
3
, c
9
u
17
+ 5u
13
+ ··· + 4u 1
c
4
, c
6
u
17
+ 2u
16
+ ··· + 8u 1
c
5
u
17
+ 10u
16
+ ··· + 5u + 2
3
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
7
y
17
+ 9y
16
+ ··· + 17y 16
c
2
, c
8
y
17
+ 7y
16
+ ··· 19y 1
c
3
, c
9
y
17
+ 10y
15
+ ··· + 10y 1
c
4
, c
6
y
17
12y
16
+ ··· + 46y 1
c
5
y
17
+ 16y
15
+ ··· 11y 4
4
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.048681 + 1.008070I
a = 1.66750 + 0.61626I
b = 1.134670 + 0.483593I
3.35770 + 0.12402I 5.97884 + 0.38118I
u = 0.048681 1.008070I
a = 1.66750 0.61626I
b = 1.134670 0.483593I
3.35770 0.12402I 5.97884 0.38118I
u = 0.423210 + 0.769632I
a = 0.879104 + 0.306597I
b = 0.311039 0.398365I
0.28619 + 1.83578I 2.59246 3.36751I
u = 0.423210 0.769632I
a = 0.879104 0.306597I
b = 0.311039 + 0.398365I
0.28619 1.83578I 2.59246 + 3.36751I
u = 1.115480 + 0.170377I
a = 0.027795 0.216323I
b = 0.973543 + 0.694225I
0.27750 + 8.29795I 1.06571 6.88359I
u = 1.115480 0.170377I
a = 0.027795 + 0.216323I
b = 0.973543 0.694225I
0.27750 8.29795I 1.06571 + 6.88359I
u = 1.18539
a = 0.285468
b = 0.154842
2.39123 15.5890
u = 0.546851 + 1.063670I
a = 0.818209 + 0.890659I
b = 1.249560 + 0.062335I
3.79067 2.00597I 6.21078 + 1.26630I
u = 0.546851 1.063670I
a = 0.818209 0.890659I
b = 1.249560 0.062335I
3.79067 + 2.00597I 6.21078 1.26630I
u = 0.437546 + 1.154220I
a = 1.81788 + 0.29672I
b = 1.40541 + 1.07727I
4.31147 5.61068I 7.96642 + 8.06049I
5
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.437546 1.154220I
a = 1.81788 0.29672I
b = 1.40541 1.07727I
4.31147 + 5.61068I 7.96642 8.06049I
u = 0.582313 + 0.090917I
a = 0.732188 0.199615I
b = 0.842156 0.620975I
1.32135 + 1.62186I 2.58195 4.11393I
u = 0.582313 0.090917I
a = 0.732188 + 0.199615I
b = 0.842156 + 0.620975I
1.32135 1.62186I 2.58195 + 4.11393I
u = 0.59542 + 1.30831I
a = 1.58913 0.22054I
b = 1.40015 0.93567I
3.3114 14.3446I 1.18187 + 8.40363I
u = 0.59542 1.30831I
a = 1.58913 + 0.22054I
b = 1.40015 + 0.93567I
3.3114 + 14.3446I 1.18187 8.40363I
u = 0.28698 + 1.44004I
a = 0.807648 0.511056I
b = 0.869639 0.080492I
5.40594 + 3.12036I 5.53287 3.71986I
u = 0.28698 1.44004I
a = 0.807648 + 0.511056I
b = 0.869639 + 0.080492I
5.40594 3.12036I 5.53287 + 3.71986I
6
II.
I
u
2
= hu
10
a2u
9
a+· · ·+a1, u
9
au
10
+· · ·+a
2
+1, u
11
3u
10
+· · ·+2u1i
(i) Arc colorings
a
2
=
1
0
a
7
=
0
u
a
1
=
1
u
2
a
5
=
a
u
10
a + 2u
9
a + ··· a + 1
a
8
=
u
u
3
+ u
a
4
=
u
10
a + 2u
9
a + ··· 2u + 1
u
10
a + 2u
9
a + ··· a + 1
a
3
=
u
9
2u
8
+ 4u
7
3u
6
+ u
5
+ u
3
a + u
4
4u
3
+ au + 2u
2
+ a 3u + 1
u
10
a 2u
9
a + ··· + a + 1
a
6
=
u
9
a + u
9
+ ··· a + 2
1
a
9
=
u
9
4u
8
+ ··· + a 1
u
10
a + 2u
9
a + ··· a + 1
a
9
=
u
9
4u
8
+ ··· + a 1
u
10
a + 2u
9
a + ··· a + 1
(ii) Obstruction class = 1
(iii) Cusp Shapes = 4u
10
4u
9
+ 8u
8
+ 4u
7
8u
6
+ 12u
5
12u
4
+ 4u
3
8u
2
+ 2
7
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
7
(u
11
3u
10
+ ··· + 2u 1)
2
c
2
, c
8
u
22
+ 3u
21
+ ··· + 6u + 1
c
3
, c
9
u
22
+ u
21
+ ··· 10u + 1
c
4
, c
6
u
22
u
21
+ ··· 4u + 1
c
5
(u
11
5u
10
+ 12u
9
15u
8
+ 8u
7
+ 4u
6
8u
5
+ 3u
4
+ 3u
3
3u
2
+ 1)
2
8
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
7
(y
11
+ 7y
10
+ ··· 6y 1)
2
c
2
, c
8
y
22
5y
21
+ ··· + 72y
2
+ 1
c
3
, c
9
y
22
y
21
+ ··· 8y + 1
c
4
, c
6
y
22
+ 3y
21
+ ··· + 8y + 1
c
5
(y
11
y
10
+ ··· + 6y 1)
2
9
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
2
1(vol +
1CS) Cusp shape
u = 0.253759 + 0.946686I
a = 0.049055 1.213920I
b = 0.33551 + 1.93421I
0.13765 5.21629I 0.43603 + 9.01278I
u = 0.253759 + 0.946686I
a = 2.57911 0.36655I
b = 0.584301 + 0.546847I
0.13765 5.21629I 0.43603 + 9.01278I
u = 0.253759 0.946686I
a = 0.049055 + 1.213920I
b = 0.33551 1.93421I
0.13765 + 5.21629I 0.43603 9.01278I
u = 0.253759 0.946686I
a = 2.57911 + 0.36655I
b = 0.584301 0.546847I
0.13765 + 5.21629I 0.43603 9.01278I
u = 1.10821
a = 0.305204 + 0.028042I
b = 0.160435 0.287182I
2.37876 12.2610
u = 1.10821
a = 0.305204 0.028042I
b = 0.160435 + 0.287182I
2.37876 12.2610
u = 0.572881 + 0.536287I
a = 0.605018 0.138715I
b = 0.379406 0.599968I
0.42400 + 2.24779I 3.63582 5.06360I
u = 0.572881 + 0.536287I
a = 1.12964 + 0.99333I
b = 0.960104 0.104756I
0.42400 + 2.24779I 3.63582 5.06360I
u = 0.572881 0.536287I
a = 0.605018 + 0.138715I
b = 0.379406 + 0.599968I
0.42400 2.24779I 3.63582 + 5.06360I
u = 0.572881 0.536287I
a = 1.12964 0.99333I
b = 0.960104 + 0.104756I
0.42400 2.24779I 3.63582 + 5.06360I
10
Solutions to I
u
2
1(vol +
1CS) Cusp shape
u = 0.290349 + 1.272230I
a = 1.21435 + 0.88581I
b = 0.734695 + 0.377618I
4.63073 + 5.00074I 7.84059 6.22751I
u = 0.290349 + 1.272230I
a = 1.62496 + 0.36379I
b = 1.46811 0.97707I
4.63073 + 5.00074I 7.84059 6.22751I
u = 0.290349 1.272230I
a = 1.21435 0.88581I
b = 0.734695 0.377618I
4.63073 5.00074I 7.84059 + 6.22751I
u = 0.290349 1.272230I
a = 1.62496 0.36379I
b = 1.46811 + 0.97707I
4.63073 5.00074I 7.84059 + 6.22751I
u = 0.234018 + 0.605151I
a = 0.357585 0.648167I
b = 0.378854 1.068730I
0.80290 + 2.70441I 3.46762 + 0.08333I
u = 0.234018 + 0.605151I
a = 2.61356 + 0.79794I
b = 0.866642 0.847442I
0.80290 + 2.70441I 3.46762 + 0.08333I
u = 0.234018 0.605151I
a = 0.357585 + 0.648167I
b = 0.378854 + 1.068730I
0.80290 2.70441I 3.46762 0.08333I
u = 0.234018 0.605151I
a = 2.61356 0.79794I
b = 0.866642 + 0.847442I
0.80290 2.70441I 3.46762 0.08333I
u = 0.57044 + 1.34258I
a = 0.862107 + 0.035474I
b = 0.818255 0.852218I
1.76023 + 5.92443I 3.17045 10.02355I
u = 0.57044 + 1.34258I
a = 1.389870 + 0.219943I
b = 1.071530 + 0.524779I
1.76023 + 5.92443I 3.17045 10.02355I
11
Solutions to I
u
2
1(vol +
1CS) Cusp shape
u = 0.57044 1.34258I
a = 0.862107 0.035474I
b = 0.818255 + 0.852218I
1.76023 5.92443I 3.17045 + 10.02355I
u = 0.57044 1.34258I
a = 1.389870 0.219943I
b = 1.071530 0.524779I
1.76023 5.92443I 3.17045 + 10.02355I
12
III.
I
u
3
= h−u
3
+ 2u
2
+ b 2u + 1, u
4
u
3
+ a + u 2, u
5
2u
4
+ 3u
3
3u
2
+ u 1i
(i) Arc colorings
a
2
=
1
0
a
7
=
0
u
a
1
=
1
u
2
a
5
=
u
4
+ u
3
u + 2
u
3
2u
2
+ 2u 1
a
8
=
u
u
3
+ u
a
4
=
u
4
+ 2u
3
2u
2
+ u + 1
u
3
2u
2
+ 2u 1
a
3
=
u
4
+ u
3
u
2
+ 2
u
4
+ 2u
3
3u
2
+ 2u 1
a
6
=
u
4
+ 3u
3
4u
2
+ 4u 2
u
4
u
3
+ u
2
1
a
9
=
u
4
2u
3
+ 3u
2
2u
u
2
u + 1
a
9
=
u
4
2u
3
+ 3u
2
2u
u
2
u + 1
(ii) Obstruction class = 1
(iii) Cusp Shapes = 6u
4
+ 13u
3
22u
2
+ 14u 9
13
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
u
5
2u
4
+ 3u
3
3u
2
+ u 1
c
2
, c
8
u
5
u
4
u
3
+ u
2
1
c
3
, c
9
u
5
u
3
+ u
2
+ u 1
c
4
, c
6
u
5
+ 2u
4
+ 3u
3
+ 3u
2
+ 3u + 1
c
5
u
5
3u
4
+ 5u
3
4u
2
+ 3u 1
c
7
u
5
+ 2u
4
+ 3u
3
+ 3u
2
+ u + 1
14
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
7
y
5
+ 2y
4
y
3
7y
2
5y 1
c
2
, c
8
y
5
3y
4
+ 3y
3
3y
2
+ 2y 1
c
3
, c
9
y
5
2y
4
+ 3y
3
3y
2
+ 3y 1
c
4
, c
6
y
5
+ 2y
4
+ 3y
3
+ 5y
2
+ 3y 1
c
5
y
5
+ y
4
+ 7y
3
+ 8y
2
+ y 1
15
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
3
1(vol +
1CS) Cusp shape
u = 0.372466 + 1.263920I
a = 1.347300 0.010044I
b = 0.929085 0.848284I
3.01018 + 5.17259I 1.67537 5.94701I
u = 0.372466 1.263920I
a = 1.347300 + 0.010044I
b = 0.929085 + 0.848284I
3.01018 5.17259I 1.67537 + 5.94701I
u = 1.33263
a = 0.119827
b = 0.480071
2.14584 17.5700
u = 0.038780 + 0.656277I
a = 1.90721 0.97967I
b = 0.169121 + 1.134660I
0.29233 3.70382I 0.53969 + 6.40947I
u = 0.038780 0.656277I
a = 1.90721 + 0.97967I
b = 0.169121 1.134660I
0.29233 + 3.70382I 0.53969 6.40947I
16
IV. u-Polynomials
Crossings u-Polynomials at each crossing
c
1
(u
5
2u
4
+ 3u
3
3u
2
+ u 1)(u
11
3u
10
+ ··· + 2u 1)
2
· (u
17
+ 5u
16
+ ··· 21u 4)
c
2
, c
8
(u
5
u
4
u
3
+ u
2
1)(u
17
+ u
16
+ ··· u 1)(u
22
+ 3u
21
+ ··· + 6u + 1)
c
3
, c
9
(u
5
u
3
+ u
2
+ u 1)(u
17
+ 5u
13
+ ··· + 4u 1)
· (u
22
+ u
21
+ ··· 10u + 1)
c
4
, c
6
(u
5
+ 2u
4
+ 3u
3
+ 3u
2
+ 3u + 1)(u
17
+ 2u
16
+ ··· + 8u 1)
· (u
22
u
21
+ ··· 4u + 1)
c
5
(u
5
3u
4
+ 5u
3
4u
2
+ 3u 1)
· (u
11
5u
10
+ 12u
9
15u
8
+ 8u
7
+ 4u
6
8u
5
+ 3u
4
+ 3u
3
3u
2
+ 1)
2
· (u
17
+ 10u
16
+ ··· + 5u + 2)
c
7
(u
5
+ 2u
4
+ 3u
3
+ 3u
2
+ u + 1)(u
11
3u
10
+ ··· + 2u 1)
2
· (u
17
+ 5u
16
+ ··· 21u 4)
17
V. Riley Polynomials
Crossings Riley Polynomials at each crossing
c
1
, c
7
(y
5
+ 2y
4
y
3
7y
2
5y 1)(y
11
+ 7y
10
+ ··· 6y 1)
2
· (y
17
+ 9y
16
+ ··· + 17y 16)
c
2
, c
8
(y
5
3y
4
+ 3y
3
3y
2
+ 2y 1)(y
17
+ 7y
16
+ ··· 19y 1)
· (y
22
5y
21
+ ··· + 72y
2
+ 1)
c
3
, c
9
(y
5
2y
4
+ 3y
3
3y
2
+ 3y 1)(y
17
+ 10y
15
+ ··· + 10y 1)
· (y
22
y
21
+ ··· 8y + 1)
c
4
, c
6
(y
5
+ 2y
4
+ 3y
3
+ 5y
2
+ 3y 1)(y
17
12y
16
+ ··· + 46y 1)
· (y
22
+ 3y
21
+ ··· + 8y + 1)
c
5
(y
5
+ y
4
+ 7y
3
+ 8y
2
+ y 1)(y
11
y
10
+ ··· + 6y 1)
2
· (y
17
+ 16y
15
+ ··· 11y 4)
18