11n
85
(K11n
85
)
A knot diagram
1
Linearized knot diagam
6 1 8 11 2 3 9 5 3 8 9
Solving Sequence
2,5
6 1
3,9
10 8 7 11 4
c
5
c
1
c
2
c
9
c
8
c
7
c
11
c
4
c
3
, c
6
, c
10
Ideals for irreducible components
2
of X
par
I
u
1
= h−2u
22
2u
21
+ ··· + 4b 2, 2u
22
+ u
21
+ ··· + 4a 2, u
23
+ 2u
22
+ ··· + 4u + 2i
I
u
2
= hb + 1, u
3
+ 2u
2
+ 2a + 4, u
4
+ 2u
2
+ 2i
I
u
3
= h−a
2
u + 2b + a 2, a
3
+ 2a
2
u au + 2a + 2, u
2
u + 1i
I
v
1
= ha, b 1, v 1i
* 4 irreducible components of dim
C
= 0, with total 34 representations.
1
The image of knot diagram is generated by the software Draw programme developed by An-
drew Bartholomew(http://www.layer8.co.uk/maths/draw/index.htm#Running-draw), where we modi-
fied some parts for our purpose(https://github.com/CATsTAILs/LinksPainter).
2
All coefficients of polynomials are rational numbers. But the coefficients are sometimes approximated
in decimal forms when there is not enough margin.
1
I.
I
u
1
= h−2u
22
2u
21
+· · ·+4b2, 2u
22
+u
21
+· · ·+4a2, u
23
+2u
22
+· · ·+4u+2i
(i) Arc colorings
a
2
=
0
u
a
5
=
1
0
a
6
=
1
u
2
a
1
=
u
u
3
+ u
a
3
=
u
3
u
5
+ u
3
+ u
a
9
=
1
2
u
22
1
4
u
21
+ ···
1
2
u +
1
2
1
2
u
22
+
1
2
u
21
+ ··· +
1
2
u +
1
2
a
10
=
1
4
u
18
u
16
+ ··· +
1
2
u +
1
2
1
2
u
13
3
2
u
11
+ ··· u
3
u
a
8
=
1
4
u
21
+ u
19
+ ···
1
2
u
3
+ 1
1
2
u
22
+
1
2
u
21
+ ··· +
1
2
u +
1
2
a
7
=
u
6
u
4
+ 1
u
8
+ 2u
6
+ 2u
4
a
11
=
1
2
u
22
+
3
4
u
21
+ ···
1
2
u
1
2
1
2
u
22
+
1
2
u
21
+ ··· +
3
2
u +
1
2
a
4
=
1
4
u
21
u
19
+ ···
3
2
u
3
u
1
4
u
21
5
4
u
19
+ ··· +
1
2
u
2
+
1
2
u
a
4
=
1
4
u
21
u
19
+ ···
3
2
u
3
u
1
4
u
21
5
4
u
19
+ ··· +
1
2
u
2
+
1
2
u
(ii) Obstruction class = 1
(iii) Cusp Shapes = 2u
22
+ 4u
21
+ 10u
20
+ 16u
19
+ 24u
18
+ 34u
17
+ 30u
16
+ 40u
15
+
16u
14
+ 30u
13
+ 32u
11
+ 8u
10
+ 46u
9
+ 14u
8
+ 42u
7
8u
6
+ 2u
5
24u
4
+ 2u
3
+ 4u
2
+ 10u
2
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
5
u
23
+ 2u
22
+ ··· + 4u + 2
c
2
u
23
+ 10u
22
+ ··· + 8u 4
c
3
u
23
+ 27u
21
+ ··· 7u + 1
c
4
, c
9
u
23
2u
22
+ ··· + 9u + 1
c
6
u
23
2u
22
+ ··· 88u + 16
c
7
u
23
+ 2u
22
+ ··· 11u + 1
c
8
u
23
+ 2u
22
+ ··· 3u + 1
c
10
u
23
5u
22
+ ··· + 128u + 1706
c
11
u
23
+ 8u
22
+ ··· + 1035u + 297
3
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
5
y
23
+ 10y
22
+ ··· + 8y 4
c
2
y
23
+ 6y
22
+ ··· + 160y 16
c
3
y
23
+ 54y
22
+ ··· + 25y 1
c
4
, c
9
y
23
34y
22
+ ··· 27y 1
c
6
y
23
+ 2y
22
+ ··· + 960y 256
c
7
y
23
+ 46y
22
+ ··· 135y 1
c
8
y
23
2y
22
+ ··· 11y 1
c
10
y
23
+ 41y
22
+ ··· 12287288y 2910436
c
11
y
23
26y
22
+ ··· + 935793y 88209
4
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.887093 + 0.448454I
a = 0.492271 + 1.285580I
b = 1.14839 1.01565I
11.55830 6.04378I 2.90457 + 2.40956I
u = 0.887093 0.448454I
a = 0.492271 1.285580I
b = 1.14839 + 1.01565I
11.55830 + 6.04378I 2.90457 2.40956I
u = 0.865908 + 0.562605I
a = 0.29789 + 1.55245I
b = 0.94225 1.16788I
12.26940 1.86843I 3.51927 + 2.09858I
u = 0.865908 0.562605I
a = 0.29789 1.55245I
b = 0.94225 + 1.16788I
12.26940 + 1.86843I 3.51927 2.09858I
u = 0.126252 + 0.927958I
a = 0.472434 + 0.373694I
b = 0.816023 0.401741I
1.83455 + 1.28121I 6.39377 3.70883I
u = 0.126252 0.927958I
a = 0.472434 0.373694I
b = 0.816023 + 0.401741I
1.83455 1.28121I 6.39377 + 3.70883I
u = 0.687410 + 0.551797I
a = 0.93433 1.33726I
b = 0.566101 + 0.784858I
2.63493 + 2.12803I 3.22069 2.55962I
u = 0.687410 0.551797I
a = 0.93433 + 1.33726I
b = 0.566101 0.784858I
2.63493 2.12803I 3.22069 + 2.55962I
u = 0.439313 + 1.087580I
a = 1.12704 + 1.03997I
b = 1.028740 0.075248I
4.16811 3.61856I 9.97032 + 4.29272I
u = 0.439313 1.087580I
a = 1.12704 1.03997I
b = 1.028740 + 0.075248I
4.16811 + 3.61856I 9.97032 4.29272I
5
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.611535 + 1.029680I
a = 0.57884 1.78933I
b = 0.744103 + 0.840632I
1.22653 7.16348I 0.15345 + 7.54828I
u = 0.611535 1.029680I
a = 0.57884 + 1.78933I
b = 0.744103 0.840632I
1.22653 + 7.16348I 0.15345 7.54828I
u = 0.470162 + 1.125140I
a = 1.139790 0.221923I
b = 0.174623 + 0.267387I
0.75408 + 3.78076I 1.64329 3.83078I
u = 0.470162 1.125140I
a = 1.139790 + 0.221923I
b = 0.174623 0.267387I
0.75408 3.78076I 1.64329 + 3.83078I
u = 0.066964 + 1.228960I
a = 0.900031 + 0.128011I
b = 0.988654 + 0.944921I
5.54974 3.50228I 1.93120 + 2.15966I
u = 0.066964 1.228960I
a = 0.900031 0.128011I
b = 0.988654 0.944921I
5.54974 + 3.50228I 1.93120 2.15966I
u = 0.694097 + 1.072020I
a = 1.125380 + 0.108515I
b = 0.83601 1.20931I
10.72870 3.91001I 1.79235 + 2.50229I
u = 0.694097 1.072020I
a = 1.125380 0.108515I
b = 0.83601 + 1.20931I
10.72870 + 3.91001I 1.79235 2.50229I
u = 0.652491 + 1.132530I
a = 1.13140 + 1.85064I
b = 1.20493 0.95597I
9.4833 + 11.7267I 0.34491 6.55767I
u = 0.652491 1.132530I
a = 1.13140 1.85064I
b = 1.20493 + 0.95597I
9.4833 11.7267I 0.34491 + 6.55767I
6
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.601530 + 0.285314I
a = 1.041030 0.706848I
b = 0.179556 + 0.418301I
1.74084 + 0.44680I 5.28361 1.38333I
u = 0.601530 0.285314I
a = 1.041030 + 0.706848I
b = 0.179556 0.418301I
1.74084 0.44680I 5.28361 + 1.38333I
u = 0.507450
a = 0.0879637
b = 0.899884
1.46388 6.51990
7
II. I
u
2
= hb + 1, u
3
+ 2u
2
+ 2a + 4, u
4
+ 2u
2
+ 2i
(i) Arc colorings
a
2
=
0
u
a
5
=
1
0
a
6
=
1
u
2
a
1
=
u
u
3
+ u
a
3
=
u
3
u
3
u
a
9
=
1
2
u
3
u
2
2
1
a
10
=
1
2
u
3
u
2
2
u
3
+ u 1
a
8
=
1
2
u
3
u
2
3
1
a
7
=
1
0
a
11
=
3
2
u
3
u
2
u 3
1
a
4
=
3
2
u
3
+ u
2
+ u + 4
1
a
4
=
3
2
u
3
+ u
2
+ u + 4
1
(ii) Obstruction class = 1
(iii) Cusp Shapes = 4u
2
8
8
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
5
u
4
+ 2u
2
+ 2
c
2
(u
2
+ 2u + 2)
2
c
3
u
4
+ 4u
3
+ 4u
2
+ 1
c
4
(u + 1)
4
c
6
, c
10
u
4
2u
2
+ 2
c
7
, c
8
, c
9
(u 1)
4
c
11
u
4
4u
3
+ 4u
2
+ 1
9
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
5
(y
2
+ 2y + 2)
2
c
2
(y
2
+ 4)
2
c
3
, c
11
y
4
8y
3
+ 18y
2
+ 8y + 1
c
4
, c
7
, c
8
c
9
(y 1)
4
c
6
, c
10
(y
2
2y + 2)
2
10
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
2
1(vol +
1CS) Cusp shape
u = 0.455090 + 1.098680I
a = 0.223113 0.678203I
b = 1.00000
2.46740 + 3.66386I 4.00000 4.00000I
u = 0.455090 1.098680I
a = 0.223113 + 0.678203I
b = 1.00000
2.46740 3.66386I 4.00000 + 4.00000I
u = 0.455090 + 1.098680I
a = 1.77689 + 1.32180I
b = 1.00000
2.46740 3.66386I 4.00000 + 4.00000I
u = 0.455090 1.098680I
a = 1.77689 1.32180I
b = 1.00000
2.46740 + 3.66386I 4.00000 4.00000I
11
III. I
u
3
= h−a
2
u + 2b + a 2, a
3
+ 2a
2
u au + 2a + 2, u
2
u + 1i
(i) Arc colorings
a
2
=
0
u
a
5
=
1
0
a
6
=
1
u + 1
a
1
=
u
u 1
a
3
=
1
0
a
9
=
a
1
2
a
2
u
1
2
a + 1
a
10
=
1
2
a
2
u +
1
2
a + 1
1
2
a
2
u
1
2
a + 1
a
8
=
1
2
a
2
u +
1
2
a + 1
1
2
a
2
u
1
2
a + 1
a
7
=
u
u + 1
a
11
=
1
2
a
2
u
1
2
a 1
1
2
a
2
u +
1
2
a 1
a
4
=
1
2
a
2
u
1
2
a + 1
1
2
a
2
u
1
2
a
2
+
1
2
au a + u
a
4
=
1
2
a
2
u
1
2
a + 1
1
2
a
2
u
1
2
a
2
+
1
2
au a + u
(ii) Obstruction class = 1
(iii) Cusp Shapes = 4u + 2
12
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
5
(u
2
u + 1)
3
c
2
, c
6
(u
2
+ u + 1)
3
c
3
, c
4
, c
8
c
9
u
6
2u
4
u
3
+ u
2
+ u + 1
c
7
u
6
+ 4u
5
+ 6u
4
+ 3u
3
u
2
u + 1
c
10
u
6
c
11
u
6
4u
5
+ 6u
4
3u
3
u
2
+ u + 1
13
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
2
, c
5
c
6
(y
2
+ y + 1)
3
c
3
, c
4
, c
8
c
9
y
6
4y
5
+ 6y
4
3y
3
y
2
+ y + 1
c
7
, c
11
y
6
4y
5
+ 10y
4
11y
3
+ 19y
2
3y + 1
c
10
y
6
14
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
3
1(vol +
1CS) Cusp shape
u = 0.500000 + 0.866025I
a = 0.412728 + 1.011420I
b = 0.218964 0.666188I
2.02988I 0. 3.46410I
u = 0.500000 + 0.866025I
a = 0.562490 0.528127I
b = 1.033350 + 0.428825I
2.02988I 0. 3.46410I
u = 0.500000 + 0.866025I
a = 0.85024 2.21534I
b = 1.252310 + 0.237364I
2.02988I 0. 3.46410I
u = 0.500000 0.866025I
a = 0.412728 1.011420I
b = 0.218964 + 0.666188I
2.02988I 0. + 3.46410I
u = 0.500000 0.866025I
a = 0.562490 + 0.528127I
b = 1.033350 0.428825I
2.02988I 0. + 3.46410I
u = 0.500000 0.866025I
a = 0.85024 + 2.21534I
b = 1.252310 0.237364I
2.02988I 0. + 3.46410I
15
IV. I
v
1
= ha, b 1, v 1i
(i) Arc colorings
a
2
=
1
0
a
5
=
1
0
a
6
=
1
0
a
1
=
1
0
a
3
=
1
0
a
9
=
0
1
a
10
=
1
1
a
8
=
1
1
a
7
=
1
0
a
11
=
1
1
a
4
=
2
1
a
4
=
2
1
(ii) Obstruction class = 1
(iii) Cusp Shapes = 0
16
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
2
, c
5
c
6
, c
10
u
c
3
, c
4
, c
7
c
11
u 1
c
8
, c
9
u + 1
17
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
2
, c
5
c
6
, c
10
y
c
3
, c
4
, c
7
c
8
, c
9
, c
11
y 1
18
(vi) Complex Volumes and Cusp Shapes
Solutions to I
v
1
1(vol +
1CS) Cusp shape
v = 1.00000
a = 0
b = 1.00000
0 0
19
V. u-Polynomials
Crossings u-Polynomials at each crossing
c
1
, c
5
u(u
2
u + 1)
3
(u
4
+ 2u
2
+ 2)(u
23
+ 2u
22
+ ··· + 4u + 2)
c
2
u(u
2
+ u + 1)
3
(u
2
+ 2u + 2)
2
(u
23
+ 10u
22
+ ··· + 8u 4)
c
3
(u 1)(u
4
+ 4u
3
+ 4u
2
+ 1)(u
6
2u
4
u
3
+ u
2
+ u + 1)
· (u
23
+ 27u
21
+ ··· 7u + 1)
c
4
(u 1)(u + 1)
4
(u
6
2u
4
+ ··· + u + 1)(u
23
2u
22
+ ··· + 9u + 1)
c
6
u(u
2
+ u + 1)
3
(u
4
2u
2
+ 2)(u
23
2u
22
+ ··· 88u + 16)
c
7
((u 1)
5
)(u
6
+ 4u
5
+ ··· u + 1)(u
23
+ 2u
22
+ ··· 11u + 1)
c
8
((u 1)
4
)(u + 1)(u
6
2u
4
+ ··· + u + 1)(u
23
+ 2u
22
+ ··· 3u + 1)
c
9
((u 1)
4
)(u + 1)(u
6
2u
4
+ ··· + u + 1)(u
23
2u
22
+ ··· + 9u + 1)
c
10
u
7
(u
4
2u
2
+ 2)(u
23
5u
22
+ ··· + 128u + 1706)
c
11
(u 1)(u
4
4u
3
+ 4u
2
+ 1)(u
6
4u
5
+ 6u
4
3u
3
u
2
+ u + 1)
· (u
23
+ 8u
22
+ ··· + 1035u + 297)
20
VI. Riley Polynomials
Crossings Riley Polynomials at each crossing
c
1
, c
5
y(y
2
+ y + 1)
3
(y
2
+ 2y + 2)
2
(y
23
+ 10y
22
+ ··· + 8y 4)
c
2
y(y
2
+ 4)
2
(y
2
+ y + 1)
3
(y
23
+ 6y
22
+ ··· + 160y 16)
c
3
(y 1)(y
4
8y
3
+ ··· + 8y + 1)(y
6
4y
5
+ ··· + y + 1)
· (y
23
+ 54y
22
+ ··· + 25y 1)
c
4
, c
9
(y 1)
5
(y
6
4y
5
+ 6y
4
3y
3
y
2
+ y + 1)
· (y
23
34y
22
+ ··· 27y 1)
c
6
y(y
2
2y + 2)
2
(y
2
+ y + 1)
3
(y
23
+ 2y
22
+ ··· + 960y 256)
c
7
(y 1)
5
(y
6
4y
5
+ 10y
4
11y
3
+ 19y
2
3y + 1)
· (y
23
+ 46y
22
+ ··· 135y 1)
c
8
((y 1)
5
)(y
6
4y
5
+ ··· + y + 1)(y
23
2y
22
+ ··· 11y 1)
c
10
y
7
(y
2
2y + 2)
2
(y
23
+ 41y
22
+ ··· 1.22873 × 10
7
y 2910436)
c
11
(y 1)(y
4
8y
3
+ 18y
2
+ 8y + 1)
· (y
6
4y
5
+ 10y
4
11y
3
+ 19y
2
3y + 1)
· (y
23
26y
22
+ ··· + 935793y 88209)
21