11n
86
(K11n
86
)
A knot diagram
1
Linearized knot diagam
6 1 8 9 2 3 10 11 1 3 4
Solving Sequence
3,8 4,11
1 2 10 7 6 5 9
c
3
c
11
c
2
c
10
c
7
c
6
c
5
c
9
c
1
, c
4
, c
8
Ideals for irreducible components
2
of X
par
I
u
1
= h−43u
9
+ 25u
8
+ 66u
7
10u
6
255u
5
+ 76u
4
+ 202u
3
+ 72u
2
+ 77b 63u 107,
200u
9
+ 93u
8
+ 264u
7
68u
6
1041u
5
+ 255u
4
+ 773u
3
+ 197u
2
+ 77a 105u 435,
u
10
u
9
u
8
+ u
7
+ 5u
6
4u
5
3u
4
+ u
3
+ u
2
+ 2u 1i
I
u
2
= h−u
4
+ u
2
+ b u 1, 3u
4
u
3
+ 2u
2
+ a 2u 3, u
5
u
3
+ u
2
+ u 1i
I
u
3
= h624u
13
+ 464u
12
+ ··· + 481b 103, 879u
13
+ 406u
12
+ ··· + 481a 2102,
u
14
+ 6u
10
u
9
u
8
4u
7
+ 12u
6
4u
5
+ 5u
4
10u
3
+ 11u
2
5u + 1i
I
u
4
= hu
3
u
2
+ b u + 1, a, u
4
u
3
u
2
+ u + 1i
I
u
5
= hb + 1, a, u + 1i
* 5 irreducible components of dim
C
= 0, with total 34 representations.
1
The image of knot diagram is generated by the software Draw programme developed by An-
drew Bartholomew(http://www.layer8.co.uk/maths/draw/index.htm#Running-draw), where we modi-
fied some parts for our purpose(https://github.com/CATsTAILs/LinksPainter).
2
All coefficients of polynomials are rational numbers. But the coefficients are sometimes approximated
in decimal forms when there is not enough margin.
1
I. I
u
1
= h−43u
9
+ 25u
8
+ · · · + 77b 107, 200u
9
+ 93u
8
+ · · · + 77a
435, u
10
u
9
+ · · · + 2u 1i
(i) Arc colorings
a
3
=
1
0
a
8
=
0
u
a
4
=
1
u
2
a
11
=
2.59740u
9
1.20779u
8
+ ··· + 1.36364u + 5.64935
0.558442u
9
0.324675u
8
+ ··· + 0.818182u + 1.38961
a
1
=
2.59740u
9
1.20779u
8
+ ··· + 0.363636u + 5.64935
0.558442u
9
0.324675u
8
+ ··· + 0.818182u + 1.38961
a
2
=
2.63636u
9
+ 1.09091u
8
+ ··· 1.90909u 4.90909
1.41558u
9
+ 0.753247u
8
+ ··· + 0.181818u 2.10390
a
10
=
2.03896u
9
0.883117u
8
+ ··· + 0.545455u + 4.25974
0.558442u
9
0.324675u
8
+ ··· + 0.818182u + 1.38961
a
7
=
2.18182u
9
1.45455u
8
+ ··· + 2.54545u + 5.54545
0.831169u
9
0.506494u
8
+ ··· + 1.63636u + 2.20779
a
6
=
3.01299u
9
1.96104u
8
+ ··· + 4.18182u + 7.75325
0.831169u
9
0.506494u
8
+ ··· + 1.63636u + 2.20779
a
5
=
6.70130u
9
3.89610u
8
+ ··· + 4.81818u + 14.6753
2.11688u
9
1.64935u
8
+ ··· + 1.63636u + 4.77922
a
9
=
31
7
u
9
19
7
u
8
+ ··· + 4u +
76
7
1.41558u
9
0.753247u
8
+ ··· + 1.81818u + 3.10390
a
9
=
31
7
u
9
19
7
u
8
+ ··· + 4u +
76
7
1.41558u
9
0.753247u
8
+ ··· + 1.81818u + 3.10390
(ii) Obstruction class = 1
(iii) Cusp Shapes
=
73
11
u
9
34
11
u
8
7u
7
+
18
11
u
6
+
360
11
u
5
95
11
u
4
192
11
u
3
68
11
u
2
12
11
u +
109
11
2
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
5
u
10
5u
9
+ 13u
8
21u
7
+ 27u
6
32u
5
+ 35u
4
27u
3
+ 11u
2
3
c
2
u
10
+ u
9
+ ··· 66u + 9
c
3
, c
11
u
10
u
9
u
8
+ u
7
+ 5u
6
4u
5
3u
4
+ u
3
+ u
2
+ 2u 1
c
4
, c
10
u
10
8u
8
u
7
+ 19u
6
+ 4u
5
4u
4
10u
3
8u
2
3u 1
c
6
u
10
+ 2u
9
+ ··· 1236u 471
c
7
, c
9
u
10
+ 10u
8
+ 11u
7
+ 13u
6
+ 54u
5
66u
4
220u
3
96u
2
+ 13u 1
c
8
u
10
+ 9u
9
+ ··· 33u 3
3
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
5
y
10
+ y
9
+ ··· 66y + 9
c
2
y
10
+ 25y
9
+ ··· 5958y + 81
c
3
, c
11
y
10
3y
9
+ 13y
8
25y
7
+ 43y
6
48y
5
+ 25y
4
y
3
+ 3y
2
6y + 1
c
4
, c
10
y
10
16y
9
+ ··· + 7y + 1
c
6
y
10
+ 46y
9
+ ··· 1142418y + 221841
c
7
, c
9
y
10
+ 20y
9
+ ··· + 23y + 1
c
8
y
10
19y
9
+ ··· 183y + 9
4
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.959690 + 0.284587I
a = 1.388110 0.012888I
b = 0.199305 0.484467I
3.79026 3.69224I 7.80243 + 4.12303I
u = 0.959690 0.284587I
a = 1.388110 + 0.012888I
b = 0.199305 + 0.484467I
3.79026 + 3.69224I 7.80243 4.12303I
u = 0.891654
a = 0.375214
b = 0.593341
1.69527 5.20410
u = 0.291247 + 0.679656I
a = 0.051370 + 0.427907I
b = 0.102468 + 0.538626I
0.05612 + 1.78093I 0.00118 2.91964I
u = 0.291247 0.679656I
a = 0.051370 0.427907I
b = 0.102468 0.538626I
0.05612 1.78093I 0.00118 + 2.91964I
u = 1.07634 + 0.95572I
a = 0.65860 + 1.36757I
b = 1.89867 0.06406I
12.08100 + 3.47973I 0.63239 2.31358I
u = 1.07634 0.95572I
a = 0.65860 1.36757I
b = 1.89867 + 0.06406I
12.08100 3.47973I 0.63239 + 2.31358I
u = 1.13781 + 0.99669I
a = 0.425016 + 1.320730I
b = 1.98575 + 0.43054I
11.8608 11.7195I 0.24253 + 5.99452I
u = 1.13781 0.99669I
a = 0.425016 1.320730I
b = 1.98575 0.43054I
11.8608 + 11.7195I 0.24253 5.99452I
u = 0.431833
a = 5.03658
b = 1.37105
2.62770 7.06150
5
II.
I
u
2
= h−u
4
+ u
2
+ b u 1, 3u
4
u
3
+ 2u
2
+ a 2u 3, u
5
u
3
+ u
2
+ u 1i
(i) Arc colorings
a
3
=
1
0
a
8
=
0
u
a
4
=
1
u
2
a
11
=
3u
4
+ u
3
2u
2
+ 2u + 3
u
4
u
2
+ u + 1
a
1
=
3u
4
+ u
3
2u
2
+ 3u + 3
u
4
+ u
3
u
2
+ u + 1
a
2
=
4u
4
3u
3
+ u
2
u 6
2u
4
u 2
a
10
=
2u
4
+ u
3
u
2
+ u + 2
u
4
u
2
+ u + 1
a
7
=
3u
4
+ 2u
3
u
2
+ 2u + 4
2u
4
+ u
3
u
2
+ 2u + 2
a
6
=
5u
4
+ 3u
3
2u
2
+ 4u + 6
2u
4
+ u
3
u
2
+ 2u + 2
a
5
=
9u
4
+ 8u
3
5u
2
+ 5u + 15
3u
4
+ 3u
3
u
2
+ u + 6
a
9
=
8u
4
+ 4u
3
4u
2
+ 5u + 9
3u
4
+ u
3
2u
2
+ 3u + 3
a
9
=
8u
4
+ 4u
3
4u
2
+ 5u + 9
3u
4
+ u
3
2u
2
+ 3u + 3
(ii) Obstruction class = 1
(iii) Cusp Shapes = 3u
4
6u
3
+ 6u
2
+ 2u 12
6
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
u
5
2u
4
+ 3u
3
3u
2
+ u 1
c
2
u
5
+ 2u
4
u
3
7u
2
5u 1
c
3
, c
11
u
5
u
3
+ u
2
+ u 1
c
4
, c
10
u
5
+ u
4
u
3
u
2
+ 1
c
5
u
5
+ 2u
4
+ 3u
3
+ 3u
2
+ u + 1
c
6
u
5
+ u
4
8u
3
+ 7u
2
u + 1
c
7
, c
9
u
5
+ 3u
4
+ 3u
3
+ 3u
2
+ 2u + 1
c
8
u
5
+ 8u
4
+ 25u
3
+ 40u
2
+ 34u + 13
7
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
5
y
5
+ 2y
4
y
3
7y
2
5y 1
c
2
y
5
6y
4
+ 19y
3
35y
2
+ 11y 1
c
3
, c
11
y
5
2y
4
+ 3y
3
3y
2
+ 3y 1
c
4
, c
10
y
5
3y
4
+ 3y
3
3y
2
+ 2y 1
c
6
y
5
17y
4
+ 48y
3
35y
2
13y 1
c
7
, c
9
y
5
3y
4
5y
3
3y
2
2y 1
c
8
y
5
14y
4
+ 53y
3
108y
2
+ 116y 169
8
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
2
1(vol +
1CS) Cusp shape
u = 0.699311 + 0.811268I
a = 0.078457 1.141870I
b = 0.609585 0.707177I
0.29233 3.70382I 1.60688 + 5.64419I
u = 0.699311 0.811268I
a = 0.078457 + 1.141870I
b = 0.609585 + 0.707177I
0.29233 + 3.70382I 1.60688 5.64419I
u = 1.045750 + 0.405588I
a = 1.14636 0.95711I
b = 0.831219 0.322384I
3.01018 + 5.17259I 5.18262 7.13326I
u = 1.045750 0.405588I
a = 1.14636 + 0.95711I
b = 0.831219 + 0.322384I
3.01018 5.17259I 5.18262 + 7.13326I
u = 0.692872
a = 4.44963
b = 1.44327
2.14584 10.4210
9
III. I
u
3
= h624u
13
+ 464u
12
+ · · · + 481b 103, 879u
13
+ 406u
12
+ · · · +
481a 2102, u
14
+ 6u
10
+ · · · 5u + 1i
(i) Arc colorings
a
3
=
1
0
a
8
=
0
u
a
4
=
1
u
2
a
11
=
1.82744u
13
0.844075u
12
+ ··· 14.1351u + 4.37006
1.29730u
13
0.964657u
12
+ ··· 5.52807u + 0.214137
a
1
=
u
13
6u
9
+ u
8
+ u
7
+ 4u
6
12u
5
+ 4u
4
5u
3
+ 10u
2
11u + 5
0.827443u
13
0.844075u
12
+ ··· 2.13514u 0.629938
a
2
=
0.629938u
13
+ 0.827443u
12
+ ··· 10.7069u + 6.28482
0.871102u
13
0.207900u
12
+ ··· 7.56341u + 1.53222
a
10
=
0.530146u
13
+ 0.120582u
12
+ ··· 8.60707u + 4.15593
1.29730u
13
0.964657u
12
+ ··· 5.52807u + 0.214137
a
7
=
0.538462u
12
+ 0.153846u
11
+ ··· 6.69231u + 3.61538
0.787942u
13
1.07900u
12
+ ··· 0.403326u 0.754678
a
6
=
0.787942u
13
0.540541u
12
+ ··· 7.09563u + 2.86071
0.787942u
13
1.07900u
12
+ ··· 0.403326u 0.754678
a
5
=
3.86694u
13
+ 0.916840u
12
+ ··· + 28.3285u 6.57173
1.28690u
13
1.23701u
12
+ ··· 3.44075u + 0.812890
a
9
=
1.50728u
13
1.50936u
12
+ ··· 7.66112u + 1.18087
0.719335u
13
0.968815u
12
+ ··· + 1.43451u 1.67983
a
9
=
1.50728u
13
1.50936u
12
+ ··· 7.66112u + 1.18087
0.719335u
13
0.968815u
12
+ ··· + 1.43451u 1.67983
(ii) Obstruction class = 1
(iii) Cusp Shapes =
3807
481
u
13
317
481
u
12
+ ··· +
38069
481
u
12692
481
10
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
5
(u
7
+ 2u
6
+ 2u
5
u
2
2u 1)
2
c
2
(u
7
+ 4u
5
4u
3
u
2
+ 2u 1)
2
c
3
, c
11
u
14
+ 6u
10
u
9
u
8
4u
7
+ 12u
6
4u
5
+ 5u
4
10u
3
+ 11u
2
5u + 1
c
4
, c
10
u
14
10u
12
+ ··· + 143u + 43
c
6
(u
7
2u
6
+ 10u
5
+ 8u
4
18u
3
39u
2
22u 5)
2
c
7
, c
9
u
14
5u
13
+ ··· 198u + 121
c
8
(u
7
3u
6
+ 2u
5
+ 5u
4
9u
3
+ u
2
+ 6u 4)
2
11
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
5
(y
7
+ 4y
5
4y
3
y
2
+ 2y 1)
2
c
2
(y
7
+ 8y
6
+ 8y
5
28y
4
+ 32y
3
17y
2
+ 2y 1)
2
c
3
, c
11
y
14
+ 12y
12
+ ··· 3y + 1
c
4
, c
10
y
14
20y
13
+ ··· 12623y + 1849
c
6
(y
7
+ 16y
6
+ 96y
5
624y
4
+ 488y
3
649y
2
+ 94y 25)
2
c
7
, c
9
y
14
+ 23y
13
+ ··· 22264y + 14641
c
8
(y
7
5y
6
+ 16y
5
43y
4
+ 71y
3
69y
2
+ 44y 16)
2
12
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
3
1(vol +
1CS) Cusp shape
u = 0.872006 + 0.599247I
a = 0.26301 1.49380I
b = 1.15078 1.28311I
1.69011 4.26740I 3.53857 + 7.16930I
u = 0.872006 0.599247I
a = 0.26301 + 1.49380I
b = 1.15078 + 1.28311I
1.69011 + 4.26740I 3.53857 7.16930I
u = 0.515925 + 0.958517I
a = 0.43660 1.40817I
b = 0.805651 0.112130I
1.69011 + 4.26740I 3.53857 7.16930I
u = 0.515925 0.958517I
a = 0.43660 + 1.40817I
b = 0.805651 + 0.112130I
1.69011 4.26740I 3.53857 + 7.16930I
u = 0.455596 + 0.508546I
a = 1.43288 1.59941I
b = 1.123580 + 0.237077I
2.45915 4.25058 + 0.I
u = 0.455596 0.508546I
a = 1.43288 + 1.59941I
b = 1.123580 0.237077I
2.45915 4.25058 + 0.I
u = 1.185390 + 0.692372I
a = 0.269101 0.619577I
b = 0.906225 0.384044I
1.50295 + 3.09849I 4.37162 6.44758I
u = 1.185390 0.692372I
a = 0.269101 + 0.619577I
b = 0.906225 + 0.384044I
1.50295 3.09849I 4.37162 + 6.44758I
u = 0.933345 + 1.046640I
a = 0.472546 + 0.634897I
b = 2.08158 + 0.10145I
12.56520 + 3.87242I 1.20776 2.37795I
u = 0.933345 1.046640I
a = 0.472546 0.634897I
b = 2.08158 0.10145I
12.56520 3.87242I 1.20776 + 2.37795I
13
Solutions to I
u
3
1(vol +
1CS) Cusp shape
u = 0.94715 + 1.16711I
a = 0.514111 + 0.530046I
b = 1.86610 0.33648I
12.56520 + 3.87242I 1.20776 2.37795I
u = 0.94715 1.16711I
a = 0.514111 0.530046I
b = 1.86610 + 0.33648I
12.56520 3.87242I 1.20776 + 2.37795I
u = 0.359911 + 0.252178I
a = 0.67818 1.99812I
b = 0.777963 0.701026I
1.50295 3.09849I 4.37162 + 6.44758I
u = 0.359911 0.252178I
a = 0.67818 + 1.99812I
b = 0.777963 + 0.701026I
1.50295 + 3.09849I 4.37162 6.44758I
14
IV. I
u
4
= hu
3
u
2
+ b u + 1, a, u
4
u
3
u
2
+ u + 1i
(i) Arc colorings
a
3
=
1
0
a
8
=
0
u
a
4
=
1
u
2
a
11
=
0
u
3
+ u
2
+ u 1
a
1
=
u
3
u
2
u + 1
u
3
+ u
2
1
a
2
=
u
3
2u
2
+ 2
u
3
+ u
2
a
10
=
u
3
u
2
u + 1
u
3
+ u
2
+ u 1
a
7
=
u
3
+ u
2
+ u 1
u
3
u
2
+ 1
a
6
=
u
u
3
u
2
+ 1
a
5
=
1
0
a
9
=
0
u
a
9
=
0
u
(ii) Obstruction class = 1
(iii) Cusp Shapes = u
3
u
2
3
15
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
2
, c
6
(u
2
+ u + 1)
2
c
3
, c
4
, c
10
c
11
u
4
u
3
u
2
+ u + 1
c
5
(u
2
u + 1)
2
c
7
, c
9
(u 1)
4
c
8
u
4
16
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
2
, c
5
c
6
(y
2
+ y + 1)
2
c
3
, c
4
, c
10
c
11
y
4
3y
3
+ 5y
2
3y + 1
c
7
, c
9
(y 1)
4
c
8
y
4
17
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
4
1(vol +
1CS) Cusp shape
u = 0.692440 + 0.318148I
a = 0
b = 1.192440 0.547877I
1.64493 2.02988I 3.50000 + 0.86603I
u = 0.692440 0.318148I
a = 0
b = 1.192440 + 0.547877I
1.64493 + 2.02988I 3.50000 0.86603I
u = 1.192440 + 0.547877I
a = 0
b = 0.692440 0.318148I
1.64493 2.02988I 3.50000 + 0.86603I
u = 1.192440 0.547877I
a = 0
b = 0.692440 + 0.318148I
1.64493 + 2.02988I 3.50000 0.86603I
18
V. I
u
5
= hb + 1, a, u + 1i
(i) Arc colorings
a
3
=
1
0
a
8
=
0
1
a
4
=
1
1
a
11
=
0
1
a
1
=
1
0
a
2
=
1
0
a
10
=
1
1
a
7
=
1
0
a
6
=
1
0
a
5
=
1
0
a
9
=
0
1
a
9
=
0
1
(ii) Obstruction class = 1
(iii) Cusp Shapes = 6
19
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
2
, c
5
c
6
, c
8
u
c
3
, c
4
, c
7
c
9
, c
10
, c
11
u + 1
20
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
2
, c
5
c
6
, c
8
y
c
3
, c
4
, c
7
c
9
, c
10
, c
11
y 1
21
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
5
1(vol +
1CS) Cusp shape
u = 1.00000
a = 0
b = 1.00000
1.64493 6.00000
22
VI. u-Polynomials
Crossings u-Polynomials at each crossing
c
1
u(u
2
+ u + 1)
2
(u
5
2u
4
+ 3u
3
3u
2
+ u 1)
· (u
7
+ 2u
6
+ 2u
5
u
2
2u 1)
2
· (u
10
5u
9
+ 13u
8
21u
7
+ 27u
6
32u
5
+ 35u
4
27u
3
+ 11u
2
3)
c
2
u(u
2
+ u + 1)
2
(u
5
+ 2u
4
u
3
7u
2
5u 1)
· ((u
7
+ 4u
5
4u
3
u
2
+ 2u 1)
2
)(u
10
+ u
9
+ ··· 66u + 9)
c
3
, c
11
(u + 1)(u
4
u
3
u
2
+ u + 1)(u
5
u
3
+ u
2
+ u 1)
· (u
10
u
9
u
8
+ u
7
+ 5u
6
4u
5
3u
4
+ u
3
+ u
2
+ 2u 1)
· (u
14
+ 6u
10
u
9
u
8
4u
7
+ 12u
6
4u
5
+ 5u
4
10u
3
+ 11u
2
5u + 1)
c
4
, c
10
(u + 1)(u
4
u
3
u
2
+ u + 1)(u
5
+ u
4
u
3
u
2
+ 1)
· (u
10
8u
8
u
7
+ 19u
6
+ 4u
5
4u
4
10u
3
8u
2
3u 1)
· (u
14
10u
12
+ ··· + 143u + 43)
c
5
u(u
2
u + 1)
2
(u
5
+ 2u
4
+ 3u
3
+ 3u
2
+ u + 1)
· (u
7
+ 2u
6
+ 2u
5
u
2
2u 1)
2
· (u
10
5u
9
+ 13u
8
21u
7
+ 27u
6
32u
5
+ 35u
4
27u
3
+ 11u
2
3)
c
6
u(u
2
+ u + 1)
2
(u
5
+ u
4
8u
3
+ 7u
2
u + 1)
· (u
7
2u
6
+ 10u
5
+ 8u
4
18u
3
39u
2
22u 5)
2
· (u
10
+ 2u
9
+ ··· 1236u 471)
c
7
, c
9
(u 1)
4
(u + 1)(u
5
+ 3u
4
+ 3u
3
+ 3u
2
+ 2u + 1)
· (u
10
+ 10u
8
+ 11u
7
+ 13u
6
+ 54u
5
66u
4
220u
3
96u
2
+ 13u 1)
· (u
14
5u
13
+ ··· 198u + 121)
c
8
u
5
(u
5
+ 8u
4
+ 25u
3
+ 40u
2
+ 34u + 13)
· (u
7
3u
6
+ 2u
5
+ 5u
4
9u
3
+ u
2
+ 6u 4)
2
· (u
10
+ 9u
9
+ ··· 33u 3)
23
VII. Riley Polynomials
Crossings Riley Polynomials at each crossing
c
1
, c
5
y(y
2
+ y + 1)
2
(y
5
+ 2y
4
y
3
7y
2
5y 1)
· ((y
7
+ 4y
5
4y
3
y
2
+ 2y 1)
2
)(y
10
+ y
9
+ ··· 66y + 9)
c
2
y(y
2
+ y + 1)
2
(y
5
6y
4
+ 19y
3
35y
2
+ 11y 1)
· (y
7
+ 8y
6
+ 8y
5
28y
4
+ 32y
3
17y
2
+ 2y 1)
2
· (y
10
+ 25y
9
+ ··· 5958y + 81)
c
3
, c
11
(y 1)(y
4
3y
3
+ 5y
2
3y + 1)(y
5
2y
4
+ 3y
3
3y
2
+ 3y 1)
· (y
10
3y
9
+ 13y
8
25y
7
+ 43y
6
48y
5
+ 25y
4
y
3
+ 3y
2
6y + 1)
· (y
14
+ 12y
12
+ ··· 3y + 1)
c
4
, c
10
(y 1)(y
4
3y
3
+ 5y
2
3y + 1)(y
5
3y
4
+ 3y
3
3y
2
+ 2y 1)
· (y
10
16y
9
+ ··· + 7y + 1)(y
14
20y
13
+ ··· 12623y + 1849)
c
6
y(y
2
+ y + 1)
2
(y
5
17y
4
+ 48y
3
35y
2
13y 1)
· (y
7
+ 16y
6
+ 96y
5
624y
4
+ 488y
3
649y
2
+ 94y 25)
2
· (y
10
+ 46y
9
+ ··· 1142418y + 221841)
c
7
, c
9
((y 1)
5
)(y
5
3y
4
+ ··· 2y 1)(y
10
+ 20y
9
+ ··· + 23y + 1)
· (y
14
+ 23y
13
+ ··· 22264y + 14641)
c
8
y
5
(y
5
14y
4
+ 53y
3
108y
2
+ 116y 169)
· (y
7
5y
6
+ 16y
5
43y
4
+ 71y
3
69y
2
+ 44y 16)
2
· (y
10
19y
9
+ ··· 183y + 9)
24