11n
90
(K11n
90
)
A knot diagram
1
Linearized knot diagam
6 1 9 8 2 3 11 4 5 1 8
Solving Sequence
1,6
2 3
5,8
4 11 7 10 9
c
1
c
2
c
5
c
4
c
11
c
7
c
10
c
9
c
3
, c
6
, c
8
Ideals for irreducible components
2
of X
par
I
u
1
= h−1238113u
25
+ 2413455u
24
+ ··· + 2221939b + 1586090,
4519597u
25
816584u
24
+ ··· + 13331634a 13110217, u
26
2u
25
+ ··· u + 3i
I
u
2
= hb 1, a
2
2au + 2a + u 2, u
2
u + 1i
I
u
3
= hb + 1, a u 1, u
2
+ u + 1i
* 3 irreducible components of dim
C
= 0, with total 32 representations.
1
The image of knot diagram is generated by the software Draw programme developed by An-
drew Bartholomew(http://www.layer8.co.uk/maths/draw/index.htm#Running-draw), where we modi-
fied some parts for our purpose(https://github.com/CATsTAILs/LinksPainter).
2
All coefficients of polynomials are rational numbers. But the coefficients are sometimes approximated
in decimal forms when there is not enough margin.
1
I.
I
u
1
= h−1.24 × 10
6
u
25
+ 2.41 × 10
6
u
24
+ · · · + 2.22 × 10
6
b + 1.59 × 10
6
, 4.52 ×
10
6
u
25
8.17 × 10
5
u
24
+ · · · + 1.33 × 10
7
a 1.31 × 10
7
, u
26
2u
25
+ · · · u + 3i
(i) Arc colorings
a
1
=
1
0
a
6
=
0
u
a
2
=
1
u
2
a
3
=
u
2
+ 1
u
2
a
5
=
u
u
3
+ u
a
8
=
0.339013u
25
+ 0.0612516u
24
+ ··· + 0.0332859u + 0.983392
0.557222u
25
1.08619u
24
+ ··· + 1.41616u 0.713831
a
4
=
0.254668u
25
+ 0.460389u
24
+ ··· 3.72725u 2.65550
0.0489476u
25
0.702694u
24
+ ··· + 2.91017u 0.764005
a
11
=
0.321877u
25
+ 0.0594569u
24
+ ··· 3.45009u + 0.683981
0.681651u
25
+ 1.22699u
24
+ ··· 0.0147380u + 0.770149
a
7
=
u
5
2u
3
u
u
5
+ u
3
+ u
a
10
=
0.359774u
25
+ 1.28645u
24
+ ··· 3.46483u + 1.45413
0.681651u
25
+ 1.22699u
24
+ ··· 0.0147380u + 0.770149
a
9
=
0.237944u
25
+ 0.0813342u
24
+ ··· 2.32111u + 1.17821
0.616774u
25
+ 1.26410u
24
+ ··· + 0.644379u + 1.01704
a
9
=
0.237944u
25
+ 0.0813342u
24
+ ··· 2.32111u + 1.17821
0.616774u
25
+ 1.26410u
24
+ ··· + 0.644379u + 1.01704
(ii) Obstruction class = 1
(iii) Cusp Shapes =
1151955
2221939
u
25
+
814709
2221939
u
24
+ ···
5153343
2221939
u
28973115
2221939
2
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
5
u
26
2u
25
+ ··· u + 3
c
2
u
26
+ 16u
25
+ ··· 43u + 9
c
3
, c
4
, c
8
u
26
+ u
25
+ ··· 8u 4
c
6
u
26
+ 2u
25
+ ··· 13u + 3
c
7
, c
11
u
26
+ 3u
25
+ ··· + 22u 3
c
9
u
26
u
25
+ ··· 32u 4
c
10
u
26
+ 33u
25
+ ··· + 64u + 9
3
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
5
y
26
+ 16y
25
+ ··· 43y + 9
c
2
y
26
8y
25
+ ··· 7123y + 81
c
3
, c
4
, c
8
y
26
+ 21y
25
+ ··· + 64y + 16
c
6
y
26
32y
25
+ ··· 187y + 9
c
7
, c
11
y
26
33y
25
+ ··· 64y + 9
c
9
y
26
39y
25
+ ··· 128y + 16
c
10
y
26
73y
25
+ ··· + 35108y + 81
4
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.987320 + 0.168214I
a = 1.297460 + 0.513052I
b = 1.63497 0.20181I
5.22414 5.39338I 6.45106 + 2.82273I
u = 0.987320 0.168214I
a = 1.297460 0.513052I
b = 1.63497 + 0.20181I
5.22414 + 5.39338I 6.45106 2.82273I
u = 1.01037
a = 1.32902
b = 1.68442
9.37437 9.45940
u = 0.541900 + 0.798242I
a = 1.229580 0.630085I
b = 0.190153 + 0.181187I
4.95516 2.19764I 0.54342 + 3.86213I
u = 0.541900 0.798242I
a = 1.229580 + 0.630085I
b = 0.190153 0.181187I
4.95516 + 2.19764I 0.54342 3.86213I
u = 0.280901 + 0.919746I
a = 0.066362 0.266060I
b = 0.270359 + 0.442643I
0.60039 + 1.42912I 6.05587 3.68708I
u = 0.280901 0.919746I
a = 0.066362 + 0.266060I
b = 0.270359 0.442643I
0.60039 1.42912I 6.05587 + 3.68708I
u = 0.086149 + 0.939073I
a = 1.12447 + 1.41361I
b = 1.170170 0.263604I
1.87196 0.46648I 9.69334 0.39377I
u = 0.086149 0.939073I
a = 1.12447 1.41361I
b = 1.170170 + 0.263604I
1.87196 + 0.46648I 9.69334 + 0.39377I
u = 0.714585 + 0.848170I
a = 1.111130 + 0.871548I
b = 1.336900 + 0.007719I
0.16795 2.70526I 6.45261 + 3.54399I
5
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.714585 0.848170I
a = 1.111130 0.871548I
b = 1.336900 0.007719I
0.16795 + 2.70526I 6.45261 3.54399I
u = 0.409972 + 1.042740I
a = 0.333921 + 0.008202I
b = 0.687191 + 0.474750I
0.71901 + 1.35928I 6.71358 0.21049I
u = 0.409972 1.042740I
a = 0.333921 0.008202I
b = 0.687191 0.474750I
0.71901 1.35928I 6.71358 + 0.21049I
u = 0.232752 + 1.110800I
a = 0.406380 + 1.143680I
b = 0.979109 0.571742I
3.76323 2.26383I 13.05428 + 2.02208I
u = 0.232752 1.110800I
a = 0.406380 1.143680I
b = 0.979109 + 0.571742I
3.76323 + 2.26383I 13.05428 2.02208I
u = 0.432711 + 1.187740I
a = 0.517506 + 1.268290I
b = 0.659883 0.866942I
0.86443 + 6.41567I 7.45843 6.37638I
u = 0.432711 1.187740I
a = 0.517506 1.268290I
b = 0.659883 + 0.866942I
0.86443 6.41567I 7.45843 + 6.37638I
u = 0.683039 + 0.071498I
a = 0.81507 1.50432I
b = 0.587913 + 0.647297I
2.38839 2.21658I 3.00360 + 3.59199I
u = 0.683039 0.071498I
a = 0.81507 + 1.50432I
b = 0.587913 0.647297I
2.38839 + 2.21658I 3.00360 3.59199I
u = 0.576371 + 1.269310I
a = 0.02214 1.67156I
b = 1.66528 + 0.31996I
8.60064 + 11.02740I 8.81919 5.78425I
6
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.576371 1.269310I
a = 0.02214 + 1.67156I
b = 1.66528 0.31996I
8.60064 11.02740I 8.81919 + 5.78425I
u = 0.376370 + 1.343310I
a = 0.157273 0.643532I
b = 1.74770 0.06929I
10.10760 0.68348I 10.33009 + 0.33748I
u = 0.376370 1.343310I
a = 0.157273 + 0.643532I
b = 1.74770 + 0.06929I
10.10760 + 0.68348I 10.33009 0.33748I
u = 0.49655 + 1.32834I
a = 0.015741 1.194450I
b = 1.76275 + 0.15335I
13.5263 5.3591I 12.04516 + 3.16064I
u = 0.49655 1.32834I
a = 0.015741 + 1.194450I
b = 1.76275 0.15335I
13.5263 + 5.3591I 12.04516 3.16064I
u = 0.339124
a = 1.65907
b = 0.613341
0.865956 11.4730
7
II. I
u
2
= hb 1, a
2
2au + 2a + u 2, u
2
u + 1i
(i) Arc colorings
a
1
=
1
0
a
6
=
0
u
a
2
=
1
u + 1
a
3
=
u
u + 1
a
5
=
u
u 1
a
8
=
a
1
a
4
=
au + u 1
au a + 2u 1
a
11
=
a + 1
1
a
7
=
1
0
a
10
=
a
1
a
9
=
u + 1
au 2
a
9
=
u + 1
au 2
(ii) Obstruction class = 1
(iii) Cusp Shapes = 4u 4
8
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
6
(u
2
u + 1)
2
c
2
, c
5
(u
2
+ u + 1)
2
c
3
, c
4
, c
8
c
9
(u
2
+ 2)
2
c
7
(u + 1)
4
c
10
, c
11
(u 1)
4
9
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
2
, c
5
c
6
(y
2
+ y + 1)
2
c
3
, c
4
, c
8
c
9
(y + 2)
4
c
7
, c
10
, c
11
(y 1)
4
10
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
2
1(vol +
1CS) Cusp shape
u = 0.500000 + 0.866025I
a = 0.724745 + 0.158919I
b = 1.00000
3.28987 + 2.02988I 6.00000 3.46410I
u = 0.500000 + 0.866025I
a = 1.72474 + 1.57313I
b = 1.00000
3.28987 + 2.02988I 6.00000 3.46410I
u = 0.500000 0.866025I
a = 0.724745 0.158919I
b = 1.00000
3.28987 2.02988I 6.00000 + 3.46410I
u = 0.500000 0.866025I
a = 1.72474 1.57313I
b = 1.00000
3.28987 2.02988I 6.00000 + 3.46410I
11
III. I
u
3
= hb + 1, a u 1, u
2
+ u + 1i
(i) Arc colorings
a
1
=
1
0
a
6
=
0
u
a
2
=
1
u + 1
a
3
=
u
u + 1
a
5
=
u
u + 1
a
8
=
u + 1
1
a
4
=
u
u + 1
a
11
=
u + 2
1
a
7
=
1
0
a
10
=
u + 1
1
a
9
=
u + 1
1
a
9
=
u + 1
1
(ii) Obstruction class = 1
(iii) Cusp Shapes = 4u 10
12
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
2
, c
6
u
2
+ u + 1
c
3
, c
4
, c
8
c
9
u
2
c
5
u
2
u + 1
c
7
, c
10
(u 1)
2
c
11
(u + 1)
2
13
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
2
, c
5
c
6
y
2
+ y + 1
c
3
, c
4
, c
8
c
9
y
2
c
7
, c
10
, c
11
(y 1)
2
14
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
3
1(vol +
1CS) Cusp shape
u = 0.500000 + 0.866025I
a = 0.500000 + 0.866025I
b = 1.00000
1.64493 2.02988I 12.00000 + 3.46410I
u = 0.500000 0.866025I
a = 0.500000 0.866025I
b = 1.00000
1.64493 + 2.02988I 12.00000 3.46410I
15
IV. u-Polynomials
Crossings u-Polynomials at each crossing
c
1
((u
2
u + 1)
2
)(u
2
+ u + 1)(u
26
2u
25
+ ··· u + 3)
c
2
((u
2
+ u + 1)
3
)(u
26
+ 16u
25
+ ··· 43u + 9)
c
3
, c
4
, c
8
u
2
(u
2
+ 2)
2
(u
26
+ u
25
+ ··· 8u 4)
c
5
(u
2
u + 1)(u
2
+ u + 1)
2
(u
26
2u
25
+ ··· u + 3)
c
6
((u
2
u + 1)
2
)(u
2
+ u + 1)(u
26
+ 2u
25
+ ··· 13u + 3)
c
7
((u 1)
2
)(u + 1)
4
(u
26
+ 3u
25
+ ··· + 22u 3)
c
9
u
2
(u
2
+ 2)
2
(u
26
u
25
+ ··· 32u 4)
c
10
((u 1)
6
)(u
26
+ 33u
25
+ ··· + 64u + 9)
c
11
((u 1)
4
)(u + 1)
2
(u
26
+ 3u
25
+ ··· + 22u 3)
16
V. Riley Polynomials
Crossings Riley Polynomials at each crossing
c
1
, c
5
((y
2
+ y + 1)
3
)(y
26
+ 16y
25
+ ··· 43y + 9)
c
2
((y
2
+ y + 1)
3
)(y
26
8y
25
+ ··· 7123y + 81)
c
3
, c
4
, c
8
y
2
(y + 2)
4
(y
26
+ 21y
25
+ ··· + 64y + 16)
c
6
((y
2
+ y + 1)
3
)(y
26
32y
25
+ ··· 187y + 9)
c
7
, c
11
((y 1)
6
)(y
26
33y
25
+ ··· 64y + 9)
c
9
y
2
(y + 2)
4
(y
26
39y
25
+ ··· 128y + 16)
c
10
((y 1)
6
)(y
26
73y
25
+ ··· + 35108y + 81)
17