11n
91
(K11n
91
)
A knot diagram
1
Linearized knot diagam
6 1 9 10 2 3 11 4 3 7 10
Solving Sequence
7,10
11 8
1,3
2 6 5 9 4
c
10
c
7
c
11
c
2
c
6
c
5
c
9
c
3
c
1
, c
4
, c
8
Ideals for irreducible components
2
of X
par
I
u
1
= h−10091257321u
20
+ 17716980292u
19
+ ··· + 366196956382b + 49796914345,
591910942537u
20
2794488596145u
19
+ ··· + 4394363476584a 481484753828,
u
21
3u
20
+ ··· 2u 3i
I
u
2
= hb
2
+ 2, a
2
a + 1, u + 1i
I
u
3
= hb, a
2
a + 1, u 1i
* 3 irreducible components of dim
C
= 0, with total 27 representations.
1
The image of knot diagram is generated by the software Draw programme developed by An-
drew Bartholomew(http://www.layer8.co.uk/maths/draw/index.htm#Running-draw), where we modi-
fied some parts for our purpose(https://github.com/CATsTAILs/LinksPainter).
2
All coefficients of polynomials are rational numbers. But the coefficients are sometimes approximated
in decimal forms when there is not enough margin.
1
I.
I
u
1
= h−1.01×10
10
u
20
+1.77×10
10
u
19
+· · ·+3.66×10
11
b+4.98×10
10
, 5.92×
10
11
u
20
2.79×10
12
u
19
+· · ·+4.39×10
12
a4.81×10
11
, u
21
3u
20
+· · ·2u3i
(i) Arc colorings
a
7
=
0
u
a
10
=
1
0
a
11
=
1
u
2
a
8
=
u
u
3
+ u
a
1
=
u
2
+ 1
u
2
a
3
=
0.134698u
20
+ 0.635926u
19
+ ··· 0.0316545u + 0.109569
0.0275569u
20
0.0483810u
19
+ ··· 1.11621u 0.135984
a
2
=
0.0599090u
20
+ 0.413165u
19
+ ··· 1.26842u + 0.402548
0.129090u
20
0.405931u
19
+ ··· 1.14509u 0.299649
a
6
=
0.0944207u
20
+ 0.398371u
19
+ ··· + 0.793023u 0.448119
0.0612997u
20
0.138407u
19
+ ··· + 0.143901u 0.565085
a
5
=
0.340816u
20
1.13692u
19
+ ··· 0.307450u 1.55518
0.154312u
20
0.484554u
19
+ ··· 0.533633u 0.125533
a
9
=
0.188362u
20
+ 0.626385u
19
+ ··· + 2.11578u + 0.520624
0.0158081u
20
+ 0.0256218u
19
+ ··· + 0.586386u 0.748984
a
4
=
0.186504u
20
+ 0.652367u
19
+ ··· 0.226183u + 1.42965
0.154312u
20
+ 0.484554u
19
+ ··· + 0.533633u + 0.125533
a
4
=
0.186504u
20
+ 0.652367u
19
+ ··· 0.226183u + 1.42965
0.154312u
20
+ 0.484554u
19
+ ··· + 0.533633u + 0.125533
(ii) Obstruction class = 1
(iii) Cusp Shapes
=
57646172449
732393912764
u
20
+
387941164973
732393912764
u
19
+ ··· +
4279700760483
732393912764
u +
1134852296901
183098478191
2
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
5
u
21
2u
20
+ ··· + 7u 3
c
2
u
21
+ 14u
20
+ ··· + 49u 9
c
3
, c
8
, c
9
u
21
+ u
20
+ ··· + 8u 4
c
4
u
21
u
20
+ ··· 64u 548
c
6
u
21
+ 2u
20
+ ··· + 19u 3
c
7
, c
10
u
21
3u
20
+ ··· 2u 3
c
11
u
21
3u
20
+ ··· + 22u 9
3
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
5
y
21
+ 14y
20
+ ··· + 49y 9
c
2
y
21
10y
20
+ ··· + 7117y 81
c
3
, c
8
, c
9
y
21
+ 31y
20
+ ··· 160y 16
c
4
y
21
+ 91y
20
+ ··· 4121248y 300304
c
6
y
21
34y
20
+ ··· + 193y 9
c
7
, c
10
y
21
3y
20
+ ··· + 22y 9
c
11
y
21
+ 37y
20
+ ··· + 2158y 81
4
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.678453 + 0.688147I
a = 0.845365 + 0.796760I
b = 0.271568 + 1.062540I
2.57223 2.30104I 5.12347 + 3.68698I
u = 0.678453 0.688147I
a = 0.845365 0.796760I
b = 0.271568 1.062540I
2.57223 + 2.30104I 5.12347 3.68698I
u = 0.316999 + 0.813917I
a = 0.403688 + 0.492380I
b = 0.713808 + 0.270061I
2.21076 + 2.09468I 3.00496 3.91489I
u = 0.316999 0.813917I
a = 0.403688 0.492380I
b = 0.713808 0.270061I
2.21076 2.09468I 3.00496 + 3.91489I
u = 1.145710 + 0.140166I
a = 0.239466 0.410115I
b = 0.264392 + 0.442489I
1.11524 + 1.37460I 4.04933 + 2.02582I
u = 1.145710 0.140166I
a = 0.239466 + 0.410115I
b = 0.264392 0.442489I
1.11524 1.37460I 4.04933 2.02582I
u = 1.134400 + 0.465760I
a = 0.130701 0.200335I
b = 0.21844 1.42669I
5.12357 + 0.62763I 1.407681 + 0.031302I
u = 1.134400 0.465760I
a = 0.130701 + 0.200335I
b = 0.21844 + 1.42669I
5.12357 0.62763I 1.407681 0.031302I
u = 0.831921 + 0.976886I
a = 0.814769 0.824529I
b = 0.567067 1.129180I
6.41753 6.55364I 2.05255 + 5.68240I
u = 0.831921 0.976886I
a = 0.814769 + 0.824529I
b = 0.567067 + 1.129180I
6.41753 + 6.55364I 2.05255 5.68240I
5
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.684877 + 0.126673I
a = 0.28002 + 1.72236I
b = 0.033686 + 0.472962I
0.91652 2.35539I 2.06528 + 5.30676I
u = 0.684877 0.126673I
a = 0.28002 1.72236I
b = 0.033686 0.472962I
0.91652 + 2.35539I 2.06528 5.30676I
u = 0.153992 + 0.545893I
a = 1.93201 1.20990I
b = 0.130919 1.391490I
5.17740 + 1.74265I 0.53526 2.03708I
u = 0.153992 0.545893I
a = 1.93201 + 1.20990I
b = 0.130919 + 1.391490I
5.17740 1.74265I 0.53526 + 2.03708I
u = 0.515961
a = 0.725450
b = 0.417301
0.754310 13.3550
u = 1.06707 + 1.07605I
a = 0.80534 1.32502I
b = 0.08814 1.77927I
12.95410 + 3.94853I 4.46142 1.91994I
u = 1.06707 1.07605I
a = 0.80534 + 1.32502I
b = 0.08814 + 1.77927I
12.95410 3.94853I 4.46142 + 1.91994I
u = 0.92823 + 1.31603I
a = 0.465176 + 1.276900I
b = 0.01070 + 1.85472I
17.8929 1.4476I 1.24285 + 0.69389I
u = 0.92823 1.31603I
a = 0.465176 1.276900I
b = 0.01070 1.85472I
17.8929 + 1.4476I 1.24285 0.69389I
u = 1.26765 + 1.02698I
a = 0.95325 + 1.07681I
b = 0.18378 + 1.78761I
16.6802 + 9.9035I 2.37944 4.78800I
6
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 1.26765 1.02698I
a = 0.95325 1.07681I
b = 0.18378 1.78761I
16.6802 9.9035I 2.37944 + 4.78800I
7
II. I
u
2
= hb
2
+ 2, a
2
a + 1, u + 1i
(i) Arc colorings
a
7
=
0
1
a
10
=
1
0
a
11
=
1
1
a
8
=
1
0
a
1
=
0
1
a
3
=
a
b
a
2
=
a
b a
a
6
=
a + 1
ba 1
a
5
=
a
b
a
9
=
ba + 1
2
a
4
=
b a
b
a
4
=
b a
b
(ii) Obstruction class = 1
(iii) Cusp Shapes = 4a + 4
8
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
6
(u
2
u + 1)
2
c
2
, c
5
(u
2
+ u + 1)
2
c
3
, c
4
, c
8
c
9
(u
2
+ 2)
2
c
7
, c
11
(u 1)
4
c
10
(u + 1)
4
9
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
2
, c
5
c
6
(y
2
+ y + 1)
2
c
3
, c
4
, c
8
c
9
(y + 2)
4
c
7
, c
10
, c
11
(y 1)
4
10
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
2
1(vol +
1CS) Cusp shape
u = 1.00000
a = 0.500000 + 0.866025I
b = 1.414210I
3.28987 2.02988I 6.00000 + 3.46410I
u = 1.00000
a = 0.500000 + 0.866025I
b = 1.414210I
3.28987 2.02988I 6.00000 + 3.46410I
u = 1.00000
a = 0.500000 0.866025I
b = 1.414210I
3.28987 + 2.02988I 6.00000 3.46410I
u = 1.00000
a = 0.500000 0.866025I
b = 1.414210I
3.28987 + 2.02988I 6.00000 3.46410I
11
III. I
u
3
= hb, a
2
a + 1, u 1i
(i) Arc colorings
a
7
=
0
1
a
10
=
1
0
a
11
=
1
1
a
8
=
1
0
a
1
=
0
1
a
3
=
a
0
a
2
=
a
a
a
6
=
a 1
1
a
5
=
a
0
a
9
=
1
0
a
4
=
a
0
a
4
=
a
0
(ii) Obstruction class = 1
(iii) Cusp Shapes = 4a + 10
12
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
2
, c
6
u
2
+ u + 1
c
3
, c
4
, c
8
c
9
u
2
c
5
u
2
u + 1
c
7
(u + 1)
2
c
10
, c
11
(u 1)
2
13
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
2
, c
5
c
6
y
2
+ y + 1
c
3
, c
4
, c
8
c
9
y
2
c
7
, c
10
, c
11
(y 1)
2
14
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
3
1(vol +
1CS) Cusp shape
u = 1.00000
a = 0.500000 + 0.866025I
b = 0
1.64493 2.02988I 12.00000 + 3.46410I
u = 1.00000
a = 0.500000 0.866025I
b = 0
1.64493 + 2.02988I 12.00000 3.46410I
15
IV. u-Polynomials
Crossings u-Polynomials at each crossing
c
1
((u
2
u + 1)
2
)(u
2
+ u + 1)(u
21
2u
20
+ ··· + 7u 3)
c
2
((u
2
+ u + 1)
3
)(u
21
+ 14u
20
+ ··· + 49u 9)
c
3
, c
8
, c
9
u
2
(u
2
+ 2)
2
(u
21
+ u
20
+ ··· + 8u 4)
c
4
u
2
(u
2
+ 2)
2
(u
21
u
20
+ ··· 64u 548)
c
5
(u
2
u + 1)(u
2
+ u + 1)
2
(u
21
2u
20
+ ··· + 7u 3)
c
6
((u
2
u + 1)
2
)(u
2
+ u + 1)(u
21
+ 2u
20
+ ··· + 19u 3)
c
7
((u 1)
4
)(u + 1)
2
(u
21
3u
20
+ ··· 2u 3)
c
10
((u 1)
2
)(u + 1)
4
(u
21
3u
20
+ ··· 2u 3)
c
11
((u 1)
6
)(u
21
3u
20
+ ··· + 22u 9)
16
V. Riley Polynomials
Crossings Riley Polynomials at each crossing
c
1
, c
5
((y
2
+ y + 1)
3
)(y
21
+ 14y
20
+ ··· + 49y 9)
c
2
((y
2
+ y + 1)
3
)(y
21
10y
20
+ ··· + 7117y 81)
c
3
, c
8
, c
9
y
2
(y + 2)
4
(y
21
+ 31y
20
+ ··· 160y 16)
c
4
y
2
(y + 2)
4
(y
21
+ 91y
20
+ ··· 4121248y 300304)
c
6
((y
2
+ y + 1)
3
)(y
21
34y
20
+ ··· + 193y 9)
c
7
, c
10
((y 1)
6
)(y
21
3y
20
+ ··· + 22y 9)
c
11
((y 1)
6
)(y
21
+ 37y
20
+ ··· + 2158y 81)
17