11n
93
(K11n
93
)
A knot diagram
1
Linearized knot diagam
5 1 9 7 2 11 3 11 7 5 8
Solving Sequence
1,5
2 3
6,8
7 11 10 9 4
c
1
c
2
c
5
c
7
c
11
c
10
c
9
c
3
c
4
, c
6
, c
8
Ideals for irreducible components
2
of X
par
I
u
1
= h−1.36953 × 10
20
u
33
1.71275 × 10
20
u
32
+ ··· + 2.52092 × 10
19
b + 1.79272 × 10
20
,
2.14966 × 10
20
u
33
+ 2.97471 × 10
20
u
32
+ ··· + 2.52092 × 10
19
a 2.61593 × 10
20
, u
34
+ 2u
33
+ ··· 3u 1i
I
u
2
= hu
10
3u
8
+ u
7
+ 5u
6
u
5
5u
4
+ 2u
3
+ 3u
2
+ b 1,
3u
10
+ 2u
9
9u
8
6u
7
+ 15u
6
+ 13u
5
13u
4
9u
3
+ 6u
2
+ a + 5u 4,
u
11
+ u
10
3u
9
3u
8
+ 5u
7
+ 6u
6
4u
5
5u
4
+ 2u
3
+ 3u
2
u 1i
* 2 irreducible components of dim
C
= 0, with total 45 representations.
1
The image of knot diagram is generated by the software Draw programme developed by An-
drew Bartholomew(http://www.layer8.co.uk/maths/draw/index.htm#Running-draw), where we modi-
fied some parts for our purpose(https://github.com/CATsTAILs/LinksPainter).
2
All coefficients of polynomials are rational numbers. But the coefficients are sometimes approximated
in decimal forms when there is not enough margin.
1
I.
I
u
1
= h−1.37×10
20
u
33
1.71×10
20
u
32
+· · ·+2.52×10
19
b+1.79×10
20
, 2.15×
10
20
u
33
+2.97×10
20
u
32
+· · ·+2.52×10
19
a2.62×10
20
, u
34
+2u
33
+· · ·3u1i
(i) Arc colorings
a
1
=
1
0
a
5
=
0
u
a
2
=
1
u
2
a
3
=
u
2
+ 1
u
2
a
6
=
u
u
3
+ u
a
8
=
8.52729u
33
11.8001u
32
+ ··· + 4.46895u + 10.3769
5.43266u
33
+ 6.79414u
32
+ ··· 10.8889u 7.11138
a
7
=
5.44195u
33
7.75886u
32
+ ··· 0.159734u + 6.36806
8.48937u
33
+ 10.7511u
32
+ ··· 17.6044u 11.3972
a
11
=
0.678159u
33
+ 0.639889u
32
+ ··· + 4.60728u + 2.39805
4.96030u
33
+ 6.55238u
32
+ ··· 11.3046u 7.35481
a
10
=
0.678159u
33
+ 0.639889u
32
+ ··· + 4.60728u + 2.39805
3.98582u
33
+ 5.46449u
32
+ ··· 9.83347u 6.63838
a
9
=
0.605729u
33
0.505670u
32
+ ··· 20.5146u 2.20921
0.341296u
33
+ 0.0744426u
32
+ ··· + 1.81668u 0.281935
a
4
=
4.14625u
33
+ 3.90637u
32
+ ··· 34.9982u 9.83659
4.60795u
33
5.18060u
32
+ ··· + 10.8857u + 5.66173
a
4
=
4.14625u
33
+ 3.90637u
32
+ ··· 34.9982u 9.83659
4.60795u
33
5.18060u
32
+ ··· + 10.8857u + 5.66173
(ii) Obstruction class = 1
(iii) Cusp Shapes =
45272021734023345182
25209200843466515639
u
33
27918280350195858852
25209200843466515639
u
32
+ ··· +
482980842236749416852
25209200843466515639
u
268074501698973471381
25209200843466515639
2
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
5
u
34
+ 2u
33
+ ··· 3u 1
c
2
u
34
+ 20u
33
+ ··· + 23u + 1
c
3
, c
10
u
34
u
33
+ ··· + 10u 1
c
4
u
34
3u
33
+ ··· + 16u + 1
c
6
u
34
+ 2u
33
+ ··· 2561u 1007
c
7
u
34
+ u
33
+ ··· 36u 9
c
8
, c
11
u
34
4u
33
+ ··· + 5u 7
c
9
u
34
2u
33
+ ··· 415u + 31
3
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
5
y
34
20y
33
+ ··· 23y + 1
c
2
y
34
4y
33
+ ··· 215y + 1
c
3
, c
10
y
34
45y
33
+ ··· + 54y + 1
c
4
y
34
61y
33
+ ··· + 4y + 1
c
6
y
34
48y
33
+ ··· 16050703y + 1014049
c
7
y
34
+ 11y
33
+ ··· 576y + 81
c
8
, c
11
y
34
+ 12y
33
+ ··· 375y + 49
c
9
y
34
48y
33
+ ··· 50333y + 961
4
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.977418 + 0.219996I
a = 0.444506 + 0.228131I
b = 1.177060 + 0.358042I
3.42083 0.72607I 14.2661 + 6.0469I
u = 0.977418 0.219996I
a = 0.444506 0.228131I
b = 1.177060 0.358042I
3.42083 + 0.72607I 14.2661 6.0469I
u = 0.573841 + 0.727686I
a = 0.107760 + 0.779562I
b = 0.238183 0.951299I
3.89256 0.89641I 5.46445 + 2.96652I
u = 0.573841 0.727686I
a = 0.107760 0.779562I
b = 0.238183 + 0.951299I
3.89256 + 0.89641I 5.46445 2.96652I
u = 1.000090 + 0.396450I
a = 0.995356 + 0.586804I
b = 0.091298 0.895598I
0.300266 + 0.779117I 12.61952 0.14976I
u = 1.000090 0.396450I
a = 0.995356 0.586804I
b = 0.091298 + 0.895598I
0.300266 0.779117I 12.61952 + 0.14976I
u = 0.878110 + 0.672399I
a = 0.639488 + 0.722914I
b = 0.282345 0.793763I
0.041134 + 0.639337I 11.81438 + 0.98279I
u = 0.878110 0.672399I
a = 0.639488 0.722914I
b = 0.282345 + 0.793763I
0.041134 0.639337I 11.81438 0.98279I
u = 0.300493 + 1.118760I
a = 0.628604 1.104010I
b = 0.708856 + 1.113100I
5.84181 6.21635I 10.71032 + 3.59890I
u = 0.300493 1.118760I
a = 0.628604 + 1.104010I
b = 0.708856 1.113100I
5.84181 + 6.21635I 10.71032 3.59890I
5
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.953057 + 0.668360I
a = 0.53608 1.54146I
b = 0.645636 + 0.835280I
0.43138 + 4.55558I 13.3660 5.8441I
u = 0.953057 0.668360I
a = 0.53608 + 1.54146I
b = 0.645636 0.835280I
0.43138 4.55558I 13.3660 + 5.8441I
u = 1.031700 + 0.655009I
a = 0.830682 0.780653I
b = 0.594629 + 0.693125I
2.55533 4.41329I 7.45627 + 1.89093I
u = 1.031700 0.655009I
a = 0.830682 + 0.780653I
b = 0.594629 0.693125I
2.55533 + 4.41329I 7.45627 1.89093I
u = 1.192910 + 0.280924I
a = 0.484338 + 0.191067I
b = 0.644248 + 0.614710I
0.99260 + 2.94608I 14.2242 4.1884I
u = 1.192910 0.280924I
a = 0.484338 0.191067I
b = 0.644248 0.614710I
0.99260 2.94608I 14.2242 + 4.1884I
u = 1.163230 + 0.443799I
a = 0.54848 1.89291I
b = 0.592978 + 1.071570I
10.91160 3.58899I 13.7786 + 3.7180I
u = 1.163230 0.443799I
a = 0.54848 + 1.89291I
b = 0.592978 1.071570I
10.91160 + 3.58899I 13.7786 3.7180I
u = 0.739045 + 0.052216I
a = 0.93579 1.67559I
b = 0.394062 + 1.339380I
1.56826 + 1.68408I 13.99827 0.91587I
u = 0.739045 0.052216I
a = 0.93579 + 1.67559I
b = 0.394062 1.339380I
1.56826 1.68408I 13.99827 + 0.91587I
6
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 1.162070 + 0.498975I
a = 0.258485 0.047341I
b = 1.31485 + 0.79996I
10.50350 + 4.65202I 13.9876 3.4886I
u = 1.162070 0.498975I
a = 0.258485 + 0.047341I
b = 1.31485 0.79996I
10.50350 4.65202I 13.9876 + 3.4886I
u = 1.183220 + 0.495063I
a = 0.910271 + 1.014240I
b = 0.63178 1.27610I
0.32497 7.07104I 12.7900 + 6.5034I
u = 1.183220 0.495063I
a = 0.910271 1.014240I
b = 0.63178 + 1.27610I
0.32497 + 7.07104I 12.7900 6.5034I
u = 0.182031 + 0.670224I
a = 0.59393 1.62022I
b = 0.306134 + 1.218490I
2.61338 + 2.54071I 8.06134 4.21753I
u = 0.182031 0.670224I
a = 0.59393 + 1.62022I
b = 0.306134 1.218490I
2.61338 2.54071I 8.06134 + 4.21753I
u = 0.158687 + 0.575572I
a = 0.27697 + 2.86042I
b = 0.950893 0.442875I
7.71465 0.24390I 10.88322 1.02866I
u = 0.158687 0.575572I
a = 0.27697 2.86042I
b = 0.950893 + 0.442875I
7.71465 + 0.24390I 10.88322 + 1.02866I
u = 1.27133 + 0.67164I
a = 0.65445 + 1.29088I
b = 0.91249 1.24105I
8.8655 + 12.5839I 13.0129 6.3971I
u = 1.27133 0.67164I
a = 0.65445 1.29088I
b = 0.91249 + 1.24105I
8.8655 12.5839I 13.0129 + 6.3971I
7
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 1.55789 + 0.27506I
a = 0.265249 0.006903I
b = 0.571671 0.692974I
12.18800 + 1.09324I 11.00000 4.94776I
u = 1.55789 0.27506I
a = 0.265249 + 0.006903I
b = 0.571671 + 0.692974I
12.18800 1.09324I 11.00000 + 4.94776I
u = 0.331451
a = 1.15110
b = 0.282626
0.627282 15.7510
u = 0.304363
a = 8.51870
b = 0.493445
7.76994 5.58750
8
II.
I
u
2
= hu
10
3u
8
+ · · · + b 1, 3u
10
+ 2u
9
+ · · · + a 4, u
11
+ u
10
+ · · · u 1i
(i) Arc colorings
a
1
=
1
0
a
5
=
0
u
a
2
=
1
u
2
a
3
=
u
2
+ 1
u
2
a
6
=
u
u
3
+ u
a
8
=
3u
10
2u
9
+ 9u
8
+ 6u
7
15u
6
13u
5
+ 13u
4
+ 9u
3
6u
2
5u + 4
u
10
+ 3u
8
u
7
5u
6
+ u
5
+ 5u
4
2u
3
3u
2
+ 1
a
7
=
2u
10
u
9
+ 6u
8
+ 3u
7
10u
6
7u
5
+ 9u
4
+ 5u
3
4u
2
4u + 3
u
10
+ 3u
8
u
7
5u
6
+ u
5
+ 5u
4
3u
3
3u
2
+ u + 1
a
11
=
2u
10
+ u
9
6u
8
2u
7
+ 10u
6
+ 4u
5
9u
4
u
3
+ 5u
2
+ u 3
u
8
u
7
+ 3u
6
+ 2u
5
5u
4
3u
3
+ 3u
2
+ u 1
a
10
=
2u
10
+ u
9
6u
8
2u
7
+ 10u
6
+ 4u
5
9u
4
u
3
+ 5u
2
+ u 3
u
10
u
9
+ 2u
8
+ 2u
7
2u
6
3u
5
u
4
+ u
2
a
9
=
4u
10
2u
9
+ ··· 6u + 7
u
10
u
9
+ 2u
8
+ 2u
7
2u
6
4u
5
u
4
+ 2u
3
+ u
2
2u
a
4
=
6u
10
+ 2u
9
19u
8
5u
7
+ 32u
6
+ 14u
5
31u
4
8u
3
+ 15u
2
+ 7u 9
2u
10
+ u
9
7u
8
2u
7
+ 13u
6
+ 4u
5
13u
4
2u
3
+ 9u
2
+ u 3
a
4
=
6u
10
+ 2u
9
19u
8
5u
7
+ 32u
6
+ 14u
5
31u
4
8u
3
+ 15u
2
+ 7u 9
2u
10
+ u
9
7u
8
2u
7
+ 13u
6
+ 4u
5
13u
4
2u
3
+ 9u
2
+ u 3
(ii) Obstruction class = 1
(iii) Cusp Shapes
= 10u
10
+ 2u
9
35u
8
4u
7
+ 63u
6
+ 16u
5
67u
4
11u
3
+ 40u
2
+ 11u 30
9
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
u
11
+ u
10
3u
9
3u
8
+ 5u
7
+ 6u
6
4u
5
5u
4
+ 2u
3
+ 3u
2
u 1
c
2
u
11
+ 7u
10
+ ··· + 7u + 1
c
3
u
11
6u
9
u
8
+ 14u
7
+ 3u
6
18u
5
4u
4
+ 12u
3
+ 3u
2
4u 1
c
4
u
11
4u
10
+ ··· 10u + 1
c
5
u
11
u
10
3u
9
+ 3u
8
+ 5u
7
6u
6
4u
5
+ 5u
4
+ 2u
3
3u
2
u + 1
c
6
u
11
+ u
10
u
9
+ 4u
8
4u
7
+ u
6
+ 4u
5
9u
4
+ 9u
3
7u
2
+ 3u 1
c
7
u
11
+ 4u
9
u
8
+ 5u
7
3u
6
3u
4
5u
3
2u
2
4u 1
c
8
u
11
3u
10
+ 7u
9
9u
8
+ 9u
7
4u
6
u
5
+ 4u
4
4u
3
+ u
2
u 1
c
9
u
11
+ 3u
10
+ u
9
+ 3u
7
+ u
5
u
4
u
3
+ 2u
2
u + 1
c
10
u
11
6u
9
+ u
8
+ 14u
7
3u
6
18u
5
+ 4u
4
+ 12u
3
3u
2
4u + 1
c
11
u
11
+ 3u
10
+ 7u
9
+ 9u
8
+ 9u
7
+ 4u
6
u
5
4u
4
4u
3
u
2
u + 1
10
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
5
y
11
7y
10
+ ··· + 7y 1
c
2
y
11
+ y
10
+ ··· + 3y 1
c
3
, c
10
y
11
12y
10
+ ··· + 22y 1
c
4
y
11
4y
10
+ ··· + 16y 1
c
6
y
11
3y
10
+ ··· 5y 1
c
7
y
11
+ 8y
10
+ ··· + 12y 1
c
8
, c
11
y
11
+ 5y
10
+ ··· + 3y 1
c
9
y
11
7y
10
+ 7y
9
+ 8y
8
+ 15y
7
10y
6
13y
5
9y
4
+ 3y
3
3y 1
11
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
2
1(vol +
1CS) Cusp shape
u = 0.699469 + 0.611146I
a = 0.428957 + 0.652621I
b = 0.620153 1.221950I
3.01958 0.56743I 9.71824 0.39336I
u = 0.699469 0.611146I
a = 0.428957 0.652621I
b = 0.620153 + 1.221950I
3.01958 + 0.56743I 9.71824 + 0.39336I
u = 0.875804
a = 0.670673
b = 1.06635
3.03217 10.2530
u = 1.006850 + 0.637757I
a = 0.820799 1.074540I
b = 0.831904 + 0.975863I
2.01933 + 5.51593I 10.60882 6.86396I
u = 1.006850 0.637757I
a = 0.820799 + 1.074540I
b = 0.831904 0.975863I
2.01933 5.51593I 10.60882 + 6.86396I
u = 0.626035 + 0.508829I
a = 0.12930 + 1.93949I
b = 0.138001 1.197500I
2.51249 2.42581I 7.49749 + 5.02500I
u = 0.626035 0.508829I
a = 0.12930 1.93949I
b = 0.138001 + 1.197500I
2.51249 + 2.42581I 7.49749 5.02500I
u = 1.163860 + 0.576096I
a = 0.961303 0.429407I
b = 0.036813 + 0.809877I
0.66663 2.01787I 8.86455 + 3.07109I
u = 1.163860 0.576096I
a = 0.961303 + 0.429407I
b = 0.036813 0.809877I
0.66663 + 2.01787I 8.86455 3.07109I
u = 0.580365
a = 4.86388
b = 0.747290
8.15261 27.3410
12
Solutions to I
u
2
1(vol +
1CS) Cusp shape
u = 1.46259
a = 0.590722
b = 0.425554
11.8310 12.0270
13
III. u-Polynomials
Crossings u-Polynomials at each crossing
c
1
(u
11
+ u
10
3u
9
3u
8
+ 5u
7
+ 6u
6
4u
5
5u
4
+ 2u
3
+ 3u
2
u 1)
· (u
34
+ 2u
33
+ ··· 3u 1)
c
2
(u
11
+ 7u
10
+ ··· + 7u + 1)(u
34
+ 20u
33
+ ··· + 23u + 1)
c
3
(u
11
6u
9
u
8
+ 14u
7
+ 3u
6
18u
5
4u
4
+ 12u
3
+ 3u
2
4u 1)
· (u
34
u
33
+ ··· + 10u 1)
c
4
(u
11
4u
10
+ ··· 10u + 1)(u
34
3u
33
+ ··· + 16u + 1)
c
5
(u
11
u
10
3u
9
+ 3u
8
+ 5u
7
6u
6
4u
5
+ 5u
4
+ 2u
3
3u
2
u + 1)
· (u
34
+ 2u
33
+ ··· 3u 1)
c
6
(u
11
+ u
10
u
9
+ 4u
8
4u
7
+ u
6
+ 4u
5
9u
4
+ 9u
3
7u
2
+ 3u 1)
· (u
34
+ 2u
33
+ ··· 2561u 1007)
c
7
(u
11
+ 4u
9
u
8
+ 5u
7
3u
6
3u
4
5u
3
2u
2
4u 1)
· (u
34
+ u
33
+ ··· 36u 9)
c
8
(u
11
3u
10
+ 7u
9
9u
8
+ 9u
7
4u
6
u
5
+ 4u
4
4u
3
+ u
2
u 1)
· (u
34
4u
33
+ ··· + 5u 7)
c
9
(u
11
+ 3u
10
+ u
9
+ 3u
7
+ u
5
u
4
u
3
+ 2u
2
u + 1)
· (u
34
2u
33
+ ··· 415u + 31)
c
10
(u
11
6u
9
+ u
8
+ 14u
7
3u
6
18u
5
+ 4u
4
+ 12u
3
3u
2
4u + 1)
· (u
34
u
33
+ ··· + 10u 1)
c
11
(u
11
+ 3u
10
+ 7u
9
+ 9u
8
+ 9u
7
+ 4u
6
u
5
4u
4
4u
3
u
2
u + 1)
· (u
34
4u
33
+ ··· + 5u 7)
14
IV. Riley Polynomials
Crossings Riley Polynomials at each crossing
c
1
, c
5
(y
11
7y
10
+ ··· + 7y 1)(y
34
20y
33
+ ··· 23y + 1)
c
2
(y
11
+ y
10
+ ··· + 3y 1)(y
34
4y
33
+ ··· 215y + 1)
c
3
, c
10
(y
11
12y
10
+ ··· + 22y 1)(y
34
45y
33
+ ··· + 54y + 1)
c
4
(y
11
4y
10
+ ··· + 16y 1)(y
34
61y
33
+ ··· + 4y + 1)
c
6
(y
11
3y
10
+ ··· 5y 1)
· (y
34
48y
33
+ ··· 16050703y + 1014049)
c
7
(y
11
+ 8y
10
+ ··· + 12y 1)(y
34
+ 11y
33
+ ··· 576y + 81)
c
8
, c
11
(y
11
+ 5y
10
+ ··· + 3y 1)(y
34
+ 12y
33
+ ··· 375y + 49)
c
9
(y
11
7y
10
+ 7y
9
+ 8y
8
+ 15y
7
10y
6
13y
5
9y
4
+ 3y
3
3y 1)
· (y
34
48y
33
+ ··· 50333y + 961)
15