11n
95
(K11n
95
)
A knot diagram
1
Linearized knot diagam
5 1 9 7 2 11 3 1 7 5 9
Solving Sequence
1,5
2 3
6,8
9 7 4 11 10
c
1
c
2
c
5
c
8
c
7
c
4
c
11
c
10
c
3
, c
6
, c
9
Ideals for irreducible components
2
of X
par
I
u
1
= hu
10
4u
9
+ 5u
8
+ 4u
7
20u
6
+ 24u
5
8u
4
8u
3
+ 7u
2
+ b 1,
u
11
7u
10
+ 18u
9
12u
8
36u
7
+ 95u
6
84u
5
2u
4
+ 59u
3
31u
2
+ 2a 9u + 9,
u
12
5u
11
+ 10u
10
4u
9
22u
8
+ 51u
7
48u
6
+ 10u
5
+ 23u
4
21u
3
+ 3u
2
+ 5u 2i
I
u
2
= hu
5
+ 2u
4
2u
2
+ b u + 1, 3u
5
5u
4
+ 2u
3
+ 8u
2
+ a + 2u 6, u
6
+ 2u
5
3u
3
2u
2
+ 2u + 1i
I
u
3
= h−4u
4
a 5u
3
a 10u
4
4u
2
a 7u
3
+ 3au + u
2
+ 11b + 5a + 13u 4,
6u
4
+ u
2
a 2u
3
+ a
2
+ 2au + 3u
2
+ a + 9u 11, u
5
+ u
4
u
2
+ u + 1i
* 3 irreducible components of dim
C
= 0, with total 28 representations.
1
The image of knot diagram is generated by the software Draw programme developed by An-
drew Bartholomew(http://www.layer8.co.uk/maths/draw/index.htm#Running-draw), where we modi-
fied some parts for our purpose(https://github.com/CATsTAILs/LinksPainter).
2
All coefficients of polynomials are rational numbers. But the coefficients are sometimes approximated
in decimal forms when there is not enough margin.
1
I.
I
u
1
= hu
10
4u
9
+· · ·+b 1, u
11
7u
10
+· · ·+2a +9, u
12
5u
11
+· · ·+5u 2i
(i) Arc colorings
a
1
=
1
0
a
5
=
0
u
a
2
=
1
u
2
a
3
=
u
2
+ 1
u
2
a
6
=
u
u
3
+ u
a
8
=
1
2
u
11
+
7
2
u
10
+ ··· +
9
2
u
9
2
u
10
+ 4u
9
5u
8
4u
7
+ 20u
6
24u
5
+ 8u
4
+ 8u
3
7u
2
+ 1
a
9
=
1
2
u
11
+
5
2
u
10
+ ··· +
9
2
u
7
2
u
10
+ 4u
9
5u
8
4u
7
+ 20u
6
24u
5
+ 8u
4
+ 8u
3
7u
2
+ 1
a
7
=
3
2
u
11
+
13
2
u
10
+ ··· +
11
2
u
7
2
u
11
4u
10
+ 6u
9
+ u
8
18u
7
+ 30u
6
22u
5
+ 2u
4
+ 9u
3
6u
2
+ 1
a
4
=
1
2
u
11
+
3
2
u
10
+ ··· +
1
2
u +
1
2
u
10
3u
9
+ 2u
8
+ 6u
7
14u
6
+ 11u
5
+ 2u
4
8u
3
+ 4u
2
+ 2u 1
a
11
=
3
2
u
11
13
2
u
10
+ ···
11
2
u +
7
2
u
11
+ 4u
10
+ ··· + 3u 1
a
10
=
3
2
u
11
13
2
u
10
+ ···
11
2
u +
7
2
u
11
+ 5u
10
+ ··· + 5u 3
a
10
=
3
2
u
11
13
2
u
10
+ ···
11
2
u +
7
2
u
11
+ 5u
10
+ ··· + 5u 3
(ii) Obstruction class = 1
(iii) Cusp Shapes
= u
11
+ 6u
10
14u
9
+ 9u
8
+ 27u
7
75u
6
+ 75u
5
10u
4
49u
3
+ 40u
2
18
2
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
5
u
12
+ 5u
11
+ ··· 5u 2
c
2
u
12
+ 5u
11
+ ··· + 37u + 4
c
3
, c
4
, c
10
u
12
u
11
+ ··· 2u 1
c
6
u
12
+ 12u
11
+ ··· + 240u + 32
c
7
u
12
+ 5u
10
+ ··· + 4u + 1
c
8
, c
11
u
12
+ 2u
11
+ ··· + 3u + 1
c
9
u
12
7u
11
+ ··· 15u 4
3
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
5
y
12
5y
11
+ ··· 37y + 4
c
2
y
12
+ 7y
11
+ ··· 353y + 16
c
3
, c
4
, c
10
y
12
19y
11
+ ··· + 2y + 1
c
6
y
12
6y
11
+ ··· 7936y + 1024
c
7
y
12
+ 10y
11
+ ··· 10y + 1
c
8
, c
11
y
12
6y
11
+ ··· 25y + 1
c
9
y
12
3y
11
+ ··· 689y + 16
4
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.634055 + 0.761588I
a = 2.40907 0.56101I
b = 1.061820 + 0.403224I
2.28232 3.09531I 6.37045 + 4.07458I
u = 0.634055 0.761588I
a = 2.40907 + 0.56101I
b = 1.061820 0.403224I
2.28232 + 3.09531I 6.37045 4.07458I
u = 0.706953 + 1.119620I
a = 2.03790 1.24403I
b = 1.33004 + 0.60517I
1.55271 + 4.05634I 6.99284 2.54487I
u = 0.706953 1.119620I
a = 2.03790 + 1.24403I
b = 1.33004 0.60517I
1.55271 4.05634I 6.99284 + 2.54487I
u = 1.184170 + 0.621257I
a = 1.075910 + 0.634900I
b = 0.732377 + 0.158790I
0.53240 2.26677I 5.92780 + 2.45213I
u = 1.184170 0.621257I
a = 1.075910 0.634900I
b = 0.732377 0.158790I
0.53240 + 2.26677I 5.92780 2.45213I
u = 0.585422 + 0.102144I
a = 0.251345 0.127948I
b = 0.388763 1.056570I
0.76434 + 2.25567I 2.25761 1.65555I
u = 0.585422 0.102144I
a = 0.251345 + 0.127948I
b = 0.388763 + 1.056570I
0.76434 2.25567I 2.25761 + 1.65555I
u = 1.13630 + 0.87513I
a = 2.57645 + 0.49107I
b = 1.35172 1.03292I
2.90723 11.19710I 8.74463 + 6.08532I
u = 1.13630 0.87513I
a = 2.57645 0.49107I
b = 1.35172 + 1.03292I
2.90723 + 11.19710I 8.74463 6.08532I
5
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.531194
a = 1.14054
b = 0.227398
0.766539 13.0250
u = 1.68330
a = 0.603416
b = 0.774996
10.8637 2.38840
6
II. I
u
2
= hu
5
+ 2u
4
2u
2
+ b u + 1, 3u
5
5u
4
+ 2u
3
+ 8u
2
+ a + 2u
6, u
6
+ 2u
5
3u
3
2u
2
+ 2u + 1i
(i) Arc colorings
a
1
=
1
0
a
5
=
0
u
a
2
=
1
u
2
a
3
=
u
2
+ 1
u
2
a
6
=
u
u
3
+ u
a
8
=
3u
5
+ 5u
4
2u
3
8u
2
2u + 6
u
5
2u
4
+ 2u
2
+ u 1
a
9
=
2u
5
+ 3u
4
2u
3
6u
2
u + 5
u
5
2u
4
+ 2u
2
+ u 1
a
7
=
2u
5
+ 3u
4
u
3
5u
2
2u + 4
u
5
2u
4
u
3
+ 2u
2
+ 2u 1
a
4
=
3u
5
5u
4
+ 2u
3
+ 8u
2
+ 3u 7
u
5
+ 2u
4
2u
2
u + 2
a
11
=
2u
5
3u
4
+ u
3
+ 5u
2
+ 2u 4
u
2
u + 1
a
10
=
2u
5
3u
4
+ u
3
+ 5u
2
+ 2u 4
u
5
+ u
4
u
3
3u
2
u + 2
a
10
=
2u
5
3u
4
+ u
3
+ 5u
2
+ 2u 4
u
5
+ u
4
u
3
3u
2
u + 2
(ii) Obstruction class = 1
(iii) Cusp Shapes = 4u
5
+ 7u
4
+ 4u
3
6u
2
9u 7
7
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
u
6
+ 2u
5
3u
3
2u
2
+ 2u + 1
c
2
u
6
+ 4u
5
+ 8u
4
+ 15u
3
+ 16u
2
+ 8u + 1
c
3
u
6
+ u
5
2u
4
3u
3
5u
2
4u 1
c
4
, c
10
u
6
u
5
2u
4
+ 3u
3
5u
2
+ 4u 1
c
5
u
6
2u
5
+ 3u
3
2u
2
2u + 1
c
6
u
6
+ u
5
2u
4
+ 2u
3
2u + 1
c
7
u
6
4u
3
5u
2
2u 1
c
8
u
6
+ 2u
5
2u
3
2u
2
u + 1
c
9
u
6
+ 4u
5
+ 5u
4
+ 2u
3
u
2
u + 1
c
11
u
6
2u
5
+ 2u
3
2u
2
+ u + 1
8
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
5
y
6
4y
5
+ 8y
4
15y
3
+ 16y
2
8y + 1
c
2
y
6
24y
4
31y
3
+ 32y
2
32y + 1
c
3
, c
4
, c
10
y
6
5y
5
+ 17y
3
+ 5y
2
6y + 1
c
6
y
6
5y
5
+ 2y
3
+ 4y
2
4y + 1
c
7
y
6
10y
4
18y
3
+ 9y
2
+ 6y + 1
c
8
, c
11
y
6
4y
5
+ 4y
4
+ 2y
3
5y + 1
c
9
y
6
6y
5
+ 7y
4
4y
3
+ 15y
2
3y + 1
9
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
2
1(vol +
1CS) Cusp shape
u = 0.907957 + 0.227043I
a = 0.348496 + 0.361180I
b = 0.355765 0.898533I
1.45069 2.49752I 13.4121 + 4.8455I
u = 0.907957 0.227043I
a = 0.348496 0.361180I
b = 0.355765 + 0.898533I
1.45069 + 2.49752I 13.4121 4.8455I
u = 0.934823 + 0.946305I
a = 2.43499 + 0.27700I
b = 1.42809 + 0.28813I
5.64849 + 3.45368I 2.17386 2.96497I
u = 0.934823 0.946305I
a = 2.43499 0.27700I
b = 1.42809 0.28813I
5.64849 3.45368I 2.17386 + 2.96497I
u = 1.52247
a = 0.116304
b = 0.452275
11.4632 16.4310
u = 0.423796
a = 5.68327
b = 1.11543
6.80200 4.39680
10
III.
I
u
3
= h−4u
4
a10u
4
+· · ·+5a4, 6u
4
2u
3
+· · ·+a11, u
5
+u
4
u
2
+u+1i
(i) Arc colorings
a
1
=
1
0
a
5
=
0
u
a
2
=
1
u
2
a
3
=
u
2
+ 1
u
2
a
6
=
u
u
3
+ u
a
8
=
a
0.363636au
4
+ 0.909091u
4
+ ··· 0.454545a + 0.363636
a
9
=
0.363636au
4
+ 0.909091u
4
+ ··· + 0.545455a + 0.363636
0.363636au
4
+ 0.909091u
4
+ ··· 0.454545a + 0.363636
a
7
=
0.272727au
4
+ 0.181818u
4
+ ··· + 0.909091a + 0.272727
0.181818au
4
+ 1.45455u
4
+ ··· 0.727273a + 0.181818
a
4
=
0.454545au
4
3.63636u
4
+ ··· 0.181818a 2.45455
0.0909091au
4
+ 1.72727u
4
+ ··· 0.363636a + 1.09091
a
11
=
0.272727au
4
+ 0.181818u
4
+ ··· + 0.909091a + 0.272727
0.181818au
4
+ 1.45455u
4
+ ··· 0.727273a + 0.181818
a
10
=
0.272727au
4
+ 0.181818u
4
+ ··· + 0.909091a + 0.272727
0.272727au
4
+ 0.818182u
4
+ ··· 0.909091a + 0.727273
a
10
=
0.272727au
4
+ 0.181818u
4
+ ··· + 0.909091a + 0.272727
0.272727au
4
+ 0.818182u
4
+ ··· 0.909091a + 0.727273
(ii) Obstruction class = 1
(iii) Cusp Shapes = 4u
4
+ 4u
2
+ 4u 18
11
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
5
(u
5
u
4
+ u
2
+ u 1)
2
c
2
(u
5
+ u
4
+ 4u
3
+ 3u
2
+ 3u + 1)
2
c
3
, c
4
, c
10
u
10
+ u
9
4u
8
4u
7
2u
6
+ 2u
5
+ 29u
4
+ 7u
3
48u
2
+ 12u 1
c
6
(u 1)
10
c
7
u
10
+ u
9
+ 2u
8
+ 6u
7
14u
6
+ 28u
5
59u
4
+ 53u
3
82u
2
+ 34u 13
c
8
, c
11
u
10
+ 3u
9
+ 2u
8
8u
7
24u
6
16u
5
+ 25u
4
+ 71u
3
+ 78u
2
+ 40u + 7
c
9
(u
5
+ 3u
4
5u
2
u + 3)
2
12
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
5
(y
5
y
4
+ 4y
3
3y
2
+ 3y 1)
2
c
2
(y
5
+ 7y
4
+ 16y
3
+ 13y
2
+ 3y 1)
2
c
3
, c
4
, c
10
y
10
9y
9
+ ··· 48y + 1
c
6
(y 1)
10
c
7
y
10
+ 3y
9
+ ··· + 976y + 169
c
8
, c
11
y
10
5y
9
+ ··· 508y + 49
c
9
(y
5
9y
4
+ 28y
3
43y
2
+ 31y 9)
2
13
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
3
1(vol +
1CS) Cusp shape
u = 0.758138 + 0.584034I
a = 1.87197 0.03044I
b = 0.452332 1.123840I
4.75993 2.21397I 11.11432 + 4.22289I
u = 0.758138 + 0.584034I
a = 0.87798 2.02319I
b = 0.81806 + 1.53771I
4.75993 2.21397I 11.11432 + 4.22289I
u = 0.758138 0.584034I
a = 1.87197 + 0.03044I
b = 0.452332 + 1.123840I
4.75993 + 2.21397I 11.11432 4.22289I
u = 0.758138 0.584034I
a = 0.87798 + 2.02319I
b = 0.81806 1.53771I
4.75993 + 2.21397I 11.11432 4.22289I
u = 0.935538 + 0.903908I
a = 1.88766 + 0.16400I
b = 0.868620 + 0.215856I
4.37856 + 3.33174I 10.08126 2.36228I
u = 0.935538 + 0.903908I
a = 2.70055 0.28054I
b = 1.72566 0.41266I
4.37856 + 3.33174I 10.08126 2.36228I
u = 0.935538 0.903908I
a = 1.88766 0.16400I
b = 0.868620 0.215856I
4.37856 3.33174I 10.08126 + 2.36228I
u = 0.935538 0.903908I
a = 2.70055 + 0.28054I
b = 1.72566 + 0.41266I
4.37856 3.33174I 10.08126 + 2.36228I
u = 0.645200
a = 3.94511
b = 0.340045
7.46192 19.6090
u = 0.645200
a = 4.07100
b = 1.83325
7.46192 19.6090
14
IV. u-Polynomials
Crossings u-Polynomials at each crossing
c
1
(u
5
u
4
+ u
2
+ u 1)
2
(u
6
+ 2u
5
3u
3
2u
2
+ 2u + 1)
· (u
12
+ 5u
11
+ ··· 5u 2)
c
2
(u
5
+ u
4
+ 4u
3
+ 3u
2
+ 3u + 1)
2
· (u
6
+ 4u
5
+ ··· + 8u + 1)(u
12
+ 5u
11
+ ··· + 37u + 4)
c
3
(u
6
+ u
5
2u
4
3u
3
5u
2
4u 1)
· (u
10
+ u
9
4u
8
4u
7
2u
6
+ 2u
5
+ 29u
4
+ 7u
3
48u
2
+ 12u 1)
· (u
12
u
11
+ ··· 2u 1)
c
4
, c
10
(u
6
u
5
2u
4
+ 3u
3
5u
2
+ 4u 1)
· (u
10
+ u
9
4u
8
4u
7
2u
6
+ 2u
5
+ 29u
4
+ 7u
3
48u
2
+ 12u 1)
· (u
12
u
11
+ ··· 2u 1)
c
5
(u
5
u
4
+ u
2
+ u 1)
2
(u
6
2u
5
+ 3u
3
2u
2
2u + 1)
· (u
12
+ 5u
11
+ ··· 5u 2)
c
6
((u 1)
10
)(u
6
+ u
5
+ ··· 2u + 1)(u
12
+ 12u
11
+ ··· + 240u + 32)
c
7
(u
6
4u
3
5u
2
2u 1)
· (u
10
+ u
9
+ 2u
8
+ 6u
7
14u
6
+ 28u
5
59u
4
+ 53u
3
82u
2
+ 34u 13)
· (u
12
+ 5u
10
+ ··· + 4u + 1)
c
8
(u
6
+ 2u
5
2u
3
2u
2
u + 1)
· (u
10
+ 3u
9
+ 2u
8
8u
7
24u
6
16u
5
+ 25u
4
+ 71u
3
+ 78u
2
+ 40u + 7)
· (u
12
+ 2u
11
+ ··· + 3u + 1)
c
9
(u
5
+ 3u
4
5u
2
u + 3)
2
(u
6
+ 4u
5
+ 5u
4
+ 2u
3
u
2
u + 1)
· (u
12
7u
11
+ ··· 15u 4)
c
11
(u
6
2u
5
+ 2u
3
2u
2
+ u + 1)
· (u
10
+ 3u
9
+ 2u
8
8u
7
24u
6
16u
5
+ 25u
4
+ 71u
3
+ 78u
2
+ 40u + 7)
· (u
12
+ 2u
11
+ ··· + 3u + 1)
15
V. Riley Polynomials
Crossings Riley Polynomials at each crossing
c
1
, c
5
(y
5
y
4
+ 4y
3
3y
2
+ 3y 1)
2
· (y
6
4y
5
+ ··· 8y + 1)(y
12
5y
11
+ ··· 37y + 4)
c
2
(y
5
+ 7y
4
+ 16y
3
+ 13y
2
+ 3y 1)
2
· (y
6
24y
4
+ ··· 32y + 1)(y
12
+ 7y
11
+ ··· 353y + 16)
c
3
, c
4
, c
10
(y
6
5y
5
+ 17y
3
+ 5y
2
6y + 1)(y
10
9y
9
+ ··· 48y + 1)
· (y
12
19y
11
+ ··· + 2y + 1)
c
6
(y 1)
10
(y
6
5y
5
+ 2y
3
+ 4y
2
4y + 1)
· (y
12
6y
11
+ ··· 7936y + 1024)
c
7
(y
6
10y
4
18y
3
+ 9y
2
+ 6y + 1)(y
10
+ 3y
9
+ ··· + 976y + 169)
· (y
12
+ 10y
11
+ ··· 10y + 1)
c
8
, c
11
(y
6
4y
5
+ 4y
4
+ 2y
3
5y + 1)(y
10
5y
9
+ ··· 508y + 49)
· (y
12
6y
11
+ ··· 25y + 1)
c
9
(y
5
9y
4
+ 28y
3
43y
2
+ 31y 9)
2
· (y
6
6y
5
+ ··· 3y + 1)(y
12
3y
11
+ ··· 689y + 16)
16