11n
98
(K11n
98
)
A knot diagram
1
Linearized knot diagam
7 1 8 7 10 2 4 11 6 8 9
Solving Sequence
8,11
9
1,4
3 2 7 5 6 10
c
8
c
11
c
3
c
2
c
7
c
4
c
6
c
10
c
1
, c
5
, c
9
Ideals for irreducible components
2
of X
par
I
u
1
= h−325810u
16
+ 546213u
15
+ ··· + 3637114b 2536642,
877137u
16
+ 1987958u
15
+ ··· + 7274228a 10784281, u
17
2u
16
+ ··· + 13u 4i
I
u
2
= h−u
10
+ u
9
+ 4u
8
3u
7
6u
6
+ 2u
5
+ 2u
4
u
2
a + 3u
3
+ 3u
2
+ b + a 3u 2, 2u
10
5u
9
+ ··· 4a + 5,
u
11
u
10
4u
9
+ 3u
8
+ 6u
7
2u
6
2u
5
3u
4
3u
3
+ 3u
2
+ 2u + 1i
I
u
3
= hau + b + a + 2u + 3, a
2
+ 2au + 4a + 2u + 6, u
2
+ u 1i
I
u
4
= hb 1, 2a 1, u 1i
* 4 irreducible components of dim
C
= 0, with total 44 representations.
1
The image of knot diagram is generated by the software Draw programme developed by An-
drew Bartholomew(http://www.layer8.co.uk/maths/draw/index.htm#Running-draw), where we modi-
fied some parts for our purpose(https://github.com/CATsTAILs/LinksPainter).
2
All coefficients of polynomials are rational numbers. But the coefficients are sometimes approximated
in decimal forms when there is not enough margin.
1
I.
I
u
1
= h−3.26 × 10
5
u
16
+ 5.46 × 10
5
u
15
+ · · · + 3.64 × 10
6
b 2.54 × 10
6
, 8.77 ×
10
5
u
16
+1.99×10
6
u
15
+· · ·+7.27×10
6
a1.08×10
7
, u
17
2u
16
+· · ·+13u4i
(i) Arc colorings
a
8
=
1
0
a
11
=
0
u
a
9
=
1
u
2
a
1
=
u
u
3
+ u
a
4
=
0.120581u
16
0.273288u
15
+ ··· 0.0580715u + 1.48253
0.0895793u
16
0.150178u
15
+ ··· + 0.0542218u + 0.697433
a
3
=
0.0310022u
16
0.123110u
15
+ ··· 0.112293u + 0.785100
0.0895793u
16
0.150178u
15
+ ··· + 0.0542218u + 0.697433
a
2
=
0.239444u
16
0.304221u
15
+ ··· 1.56094u + 1.51558
0.205575u
16
0.224465u
15
+ ··· 0.728410u + 0.910041
a
7
=
0.235464u
16
0.270574u
15
+ ··· 0.673677u + 2.19687
0.182621u
16
0.156800u
15
+ ··· 1.28067u + 0.925424
a
5
=
0.360026u
16
0.577509u
15
+ ··· 0.619016u + 2.99812
0.295154u
16
0.374642u
15
+ ··· 1.67419u + 1.60747
a
6
=
0.474993u
16
0.539864u
15
+ ··· 1.82912u + 3.29061
0.410121u
16
0.336997u
15
+ ··· 2.88429u + 1.89997
a
10
=
u
u
a
10
=
u
u
(ii) Obstruction class = 1
(iii) Cusp Shapes =
9594931
7274228
u
16
15193461
7274228
u
15
+ ··· +
10670363
7274228
u +
21150807
1818557
2
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
3
, c
4
c
6
, c
7
u
17
u
16
+ ··· 4u
2
1
c
2
u
17
+ 5u
16
+ ··· 8u 1
c
5
, c
9
u
17
3u
16
+ ··· + 22u 8
c
8
, c
10
, c
11
u
17
2u
16
+ ··· + 13u 4
3
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
3
, c
4
c
6
, c
7
y
17
+ 5y
16
+ ··· 8y 1
c
2
y
17
+ 13y
16
+ ··· 12y 1
c
5
, c
9
y
17
+ 9y
16
+ ··· 12y 64
c
8
, c
10
, c
11
y
17
16y
16
+ ··· + 209y 16
4
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.240053 + 0.973100I
a = 0.644042 0.652010I
b = 0.678341 1.093890I
0.65577 + 8.75138I 0.84209 7.19652I
u = 0.240053 0.973100I
a = 0.644042 + 0.652010I
b = 0.678341 + 1.093890I
0.65577 8.75138I 0.84209 + 7.19652I
u = 0.911746 + 0.271963I
a = 0.521420 0.719384I
b = 0.187558 0.379982I
1.69658 + 0.80451I 2.69480 2.52231I
u = 0.911746 0.271963I
a = 0.521420 + 0.719384I
b = 0.187558 + 0.379982I
1.69658 0.80451I 2.69480 + 2.52231I
u = 1.114510 + 0.218797I
a = 0.635665 + 0.251760I
b = 1.157790 + 0.487195I
0.354258 0.834124I 0.06498 + 5.84789I
u = 1.114510 0.218797I
a = 0.635665 0.251760I
b = 1.157790 0.487195I
0.354258 + 0.834124I 0.06498 5.84789I
u = 1.030910 + 0.649737I
a = 0.466920 + 0.601803I
b = 0.583285 + 0.914805I
1.75655 3.15519I 1.08772 + 4.41422I
u = 1.030910 0.649737I
a = 0.466920 0.601803I
b = 0.583285 0.914805I
1.75655 + 3.15519I 1.08772 4.41422I
u = 0.248382 + 0.709434I
a = 0.785996 0.998686I
b = 0.784905 0.787523I
2.78581 2.60100I 4.98680 + 3.49505I
u = 0.248382 0.709434I
a = 0.785996 + 0.998686I
b = 0.784905 + 0.787523I
2.78581 + 2.60100I 4.98680 3.49505I
5
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 1.44333 + 0.29962I
a = 0.27964 + 2.02194I
b = 0.606656 + 1.025000I
2.68580 + 6.31167I 1.34813 5.64607I
u = 1.44333 0.29962I
a = 0.27964 2.02194I
b = 0.606656 1.025000I
2.68580 6.31167I 1.34813 + 5.64607I
u = 1.43553 + 0.42213I
a = 0.59170 + 1.89308I
b = 0.678472 + 1.240020I
4.6382 13.7590I 2.60534 + 8.09148I
u = 1.43553 0.42213I
a = 0.59170 1.89308I
b = 0.678472 1.240020I
4.6382 + 13.7590I 2.60534 8.09148I
u = 1.67968 + 0.04846I
a = 0.20221 1.49330I
b = 0.239314 0.869369I
11.59490 + 1.04318I 1.35194 7.04363I
u = 1.67968 0.04846I
a = 0.20221 + 1.49330I
b = 0.239314 + 0.869369I
11.59490 1.04318I 1.35194 + 7.04363I
u = 0.295856
a = 1.43389
b = 0.635251
0.963952 10.6380
6
II.
I
u
2
= h−u
10
+u
9
+· · ·+a 2, 2u
10
5u
9
+· · ·4a +5, u
11
u
10
+· · ·+2u +1i
(i) Arc colorings
a
8
=
1
0
a
11
=
0
u
a
9
=
1
u
2
a
1
=
u
u
3
+ u
a
4
=
a
u
10
u
9
4u
8
+ 3u
7
+ 6u
6
2u
5
2u
4
+ u
2
a 3u
3
3u
2
a + 3u + 2
a
3
=
u
10
+ u
9
+ ··· + 2a 2
u
10
u
9
4u
8
+ 3u
7
+ 6u
6
2u
5
2u
4
+ u
2
a 3u
3
3u
2
a + 3u + 2
a
2
=
u
10
+ u
9
+ ··· + 2a 2
u
10
u
9
+ ··· a + 2
a
7
=
u
10
a + 2u
10
+ ··· 2a + 3
u
5
a u
6
+ 2u
3
a + 2u
4
au 2
a
5
=
u
7
2u
5
+ 2u
u
9
3u
7
+ 3u
5
u
a
6
=
u
10
3u
8
+ 2u
6
+ 3u
4
3u
2
1
u
10
+ u
9
3u
8
4u
7
+ 2u
6
+ 5u
5
+ 3u
4
3u
2
3u 1
a
10
=
u
u
a
10
=
u
u
(ii) Obstruction class = 1
(iii) Cusp Shapes = 4u
9
16u
7
4u
6
+ 20u
5
+ 12u
4
+ 4u
3
8u
2
20u 6
7
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
3
, c
4
c
6
, c
7
u
22
+ 3u
21
+ ··· + 24u + 9
c
2
u
22
+ 11u
21
+ ··· + 432u + 81
c
5
, c
9
(u
11
+ u
10
+ 2u
9
+ u
8
+ 4u
7
+ 2u
6
+ 4u
5
+ u
4
+ 3u
3
u
2
1)
2
c
8
, c
10
, c
11
(u
11
u
10
4u
9
+ 3u
8
+ 6u
7
2u
6
2u
5
3u
4
3u
3
+ 3u
2
+ 2u + 1)
2
8
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
3
, c
4
c
6
, c
7
y
22
+ 11y
21
+ ··· + 432y + 81
c
2
y
22
y
21
+ ··· + 35640y + 6561
c
5
, c
9
(y
11
+ 3y
10
+ ··· 2y 1)
2
c
8
, c
10
, c
11
(y
11
9y
10
+ ··· 2y 1)
2
9
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
2
1(vol +
1CS) Cusp shape
u = 1.14725
a = 2.18308 + 3.31504I
b = 0.181376 + 1.048190I
5.48524 0.376260
u = 1.14725
a = 2.18308 3.31504I
b = 0.181376 1.048190I
5.48524 0.376260
u = 0.044199 + 0.849205I
a = 0.547434 + 0.348829I
b = 0.853835 + 0.533591I
2.35273 + 3.04152I 4.06121 2.82242I
u = 0.044199 + 0.849205I
a = 0.372720 + 0.162477I
b = 0.714099 + 0.923041I
2.35273 + 3.04152I 4.06121 2.82242I
u = 0.044199 0.849205I
a = 0.547434 0.348829I
b = 0.853835 0.533591I
2.35273 3.04152I 4.06121 + 2.82242I
u = 0.044199 0.849205I
a = 0.372720 0.162477I
b = 0.714099 0.923041I
2.35273 3.04152I 4.06121 + 2.82242I
u = 1.232090 + 0.392876I
a = 0.674566 0.370203I
b = 0.623653 0.552777I
1.31282 + 1.41699I 0.791306 0.633731I
u = 1.232090 + 0.392876I
a = 0.48177 1.51619I
b = 0.555909 0.782909I
1.31282 + 1.41699I 0.791306 0.633731I
u = 1.232090 0.392876I
a = 0.674566 + 0.370203I
b = 0.623653 + 0.552777I
1.31282 1.41699I 0.791306 + 0.633731I
u = 1.232090 0.392876I
a = 0.48177 + 1.51619I
b = 0.555909 + 0.782909I
1.31282 1.41699I 0.791306 + 0.633731I
10
Solutions to I
u
2
1(vol +
1CS) Cusp shape
u = 1.317220 + 0.129556I
a = 0.469425 + 0.990105I
b = 0.752651 + 0.945347I
8.47148 2.94672I 5.79937 + 4.11787I
u = 1.317220 + 0.129556I
a = 0.15850 2.09923I
b = 0.14927 1.48798I
8.47148 2.94672I 5.79937 + 4.11787I
u = 1.317220 0.129556I
a = 0.469425 0.990105I
b = 0.752651 0.945347I
8.47148 + 2.94672I 5.79937 4.11787I
u = 1.317220 0.129556I
a = 0.15850 + 2.09923I
b = 0.14927 + 1.48798I
8.47148 + 2.94672I 5.79937 4.11787I
u = 1.304640 + 0.385413I
a = 0.579828 + 0.055525I
b = 1.081770 0.344108I
1.85809 7.47524I 0.22908 + 5.55460I
u = 1.304640 + 0.385413I
a = 0.45041 1.69192I
b = 0.747184 1.181250I
1.85809 7.47524I 0.22908 + 5.55460I
u = 1.304640 0.385413I
a = 0.579828 0.055525I
b = 1.081770 + 0.344108I
1.85809 + 7.47524I 0.22908 5.55460I
u = 1.304640 0.385413I
a = 0.45041 + 1.69192I
b = 0.747184 + 1.181250I
1.85809 + 7.47524I 0.22908 5.55460I
u = 0.271947 + 0.385187I
a = 1.270550 + 0.259399I
b = 0.087548 + 1.187670I
3.59460 + 1.13130I 0.01220 6.05785I
u = 0.271947 + 0.385187I
a = 1.80079 + 2.03466I
b = 0.285332 0.830788I
3.59460 + 1.13130I 0.01220 6.05785I
11
Solutions to I
u
2
1(vol +
1CS) Cusp shape
u = 0.271947 0.385187I
a = 1.270550 0.259399I
b = 0.087548 1.187670I
3.59460 1.13130I 0.01220 + 6.05785I
u = 0.271947 0.385187I
a = 1.80079 2.03466I
b = 0.285332 + 0.830788I
3.59460 1.13130I 0.01220 + 6.05785I
12
III. I
u
3
= hau + b + a + 2u + 3, a
2
+ 2au + 4a + 2u + 6, u
2
+ u 1i
(i) Arc colorings
a
8
=
1
0
a
11
=
0
u
a
9
=
1
u + 1
a
1
=
u
u + 1
a
4
=
a
au a 2u 3
a
3
=
au + 2a + 2u + 3
au a 2u 3
a
2
=
au + 2a + u + 3
au a 3u 2
a
7
=
2au + 3a + 6u + 9
1
a
5
=
au a 2u 3
0
a
6
=
a u 2
au + u + 1
a
10
=
u
u
a
10
=
u
u
(ii) Obstruction class = 1
(iii) Cusp Shapes = 8
13
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
3
, c
4
c
6
, c
7
(u
2
+ 1)
2
c
2
(u + 1)
4
c
5
, c
9
u
4
+ 3u
2
+ 1
c
8
(u
2
+ u 1)
2
c
10
, c
11
(u
2
u 1)
2
14
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
3
, c
4
c
6
, c
7
(y + 1)
4
c
2
(y 1)
4
c
5
, c
9
(y
2
+ 3y + 1)
2
c
8
, c
10
, c
11
(y
2
3y + 1)
2
15
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
3
1(vol +
1CS) Cusp shape
u = 0.618034
a = 2.61803 + 0.61803I
b = 1.000000I
4.27683 8.00000
u = 0.618034
a = 2.61803 0.61803I
b = 1.000000I
4.27683 8.00000
u = 1.61803
a = 0.38197 + 1.61803I
b = 1.000000I
12.1725 8.00000
u = 1.61803
a = 0.38197 1.61803I
b = 1.000000I
12.1725 8.00000
16
IV. I
u
4
= hb 1, 2a 1, u 1i
(i) Arc colorings
a
8
=
1
0
a
11
=
0
1
a
9
=
1
1
a
1
=
1
0
a
4
=
0.5
1
a
3
=
0.5
1
a
2
=
0.5
1
a
7
=
1.5
1
a
5
=
2
2
a
6
=
2
2
a
10
=
1
1
a
10
=
1
1
(ii) Obstruction class = 1
(iii) Cusp Shapes = 2.25
17
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
3
, c
4
c
10
, c
11
u + 1
c
2
, c
6
, c
7
c
8
u 1
c
5
, c
9
u
18
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
2
, c
3
c
4
, c
6
, c
7
c
8
, c
10
, c
11
y 1
c
5
, c
9
y
19
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
4
1(vol +
1CS) Cusp shape
u = 1.00000
a = 0.500000
b = 1.00000
0 2.25000
20
V. u-Polynomials
Crossings u-Polynomials at each crossing
c
1
, c
3
, c
4
(u + 1)(u
2
+ 1)
2
(u
17
u
16
+ ··· 4u
2
1)(u
22
+ 3u
21
+ ··· + 24u + 9)
c
2
(u 1)(u + 1)
4
(u
17
+ 5u
16
+ ··· 8u 1)
· (u
22
+ 11u
21
+ ··· + 432u + 81)
c
5
, c
9
u(u
4
+ 3u
2
+ 1)
· (u
11
+ u
10
+ 2u
9
+ u
8
+ 4u
7
+ 2u
6
+ 4u
5
+ u
4
+ 3u
3
u
2
1)
2
· (u
17
3u
16
+ ··· + 22u 8)
c
6
, c
7
(u 1)(u
2
+ 1)
2
(u
17
u
16
+ ··· 4u
2
1)(u
22
+ 3u
21
+ ··· + 24u + 9)
c
8
(u 1)(u
2
+ u 1)
2
· (u
11
u
10
4u
9
+ 3u
8
+ 6u
7
2u
6
2u
5
3u
4
3u
3
+ 3u
2
+ 2u + 1)
2
· (u
17
2u
16
+ ··· + 13u 4)
c
10
, c
11
(u + 1)(u
2
u 1)
2
· (u
11
u
10
4u
9
+ 3u
8
+ 6u
7
2u
6
2u
5
3u
4
3u
3
+ 3u
2
+ 2u + 1)
2
· (u
17
2u
16
+ ··· + 13u 4)
21
VI. Riley Polynomials
Crossings Riley Polynomials at each crossing
c
1
, c
3
, c
4
c
6
, c
7
(y 1)(y + 1)
4
(y
17
+ 5y
16
+ ··· 8y 1)
· (y
22
+ 11y
21
+ ··· + 432y + 81)
c
2
((y 1)
5
)(y
17
+ 13y
16
+ ··· 12y 1)
· (y
22
y
21
+ ··· + 35640y + 6561)
c
5
, c
9
y(y
2
+ 3y + 1)
2
(y
11
+ 3y
10
+ ··· 2y 1)
2
· (y
17
+ 9y
16
+ ··· 12y 64)
c
8
, c
10
, c
11
(y 1)(y
2
3y + 1)
2
(y
11
9y
10
+ ··· 2y 1)
2
· (y
17
16y
16
+ ··· + 209y 16)
22