11n
99
(K11n
99
)
A knot diagram
1
Linearized knot diagam
7 1 8 7 10 2 4 11 1 5 9
Solving Sequence
8,11
9
1,4
3 2 7 5 6 10
c
8
c
11
c
3
c
2
c
7
c
4
c
6
c
10
c
1
, c
5
, c
9
Ideals for irreducible components
2
of X
par
I
u
1
= h−1338u
11
2403u
10
+ ··· + 24722b + 1642, 2813u
11
3694u
10
+ ··· + 49444a 23561,
u
12
2u
11
3u
10
+ 7u
9
+ 3u
8
10u
7
+ 12u
6
17u
5
14u
4
+ 34u
3
+ 2u
2
7u 4i
I
u
2
= hu
5
u
4
+ u
2
a u
3
+ 2u
2
+ b a 1, u
5
+ 2u
3
a + 2u
4
2u
2
a + a
2
au 2u
2
+ 2a + 2u 1,
u
6
u
5
u
4
+ 2u
3
u + 1i
I
u
3
= h−au + b a + 1, a
2
+ 2au 4a 6u + 10, u
2
u 1i
I
u
4
= hb 1, 2a + 1, u + 1i
* 4 irreducible components of dim
C
= 0, with total 29 representations.
1
The image of knot diagram is generated by the software Draw programme developed by An-
drew Bartholomew(http://www.layer8.co.uk/maths/draw/index.htm#Running-draw), where we modi-
fied some parts for our purpose(https://github.com/CATsTAILs/LinksPainter).
2
All coefficients of polynomials are rational numbers. But the coefficients are sometimes approximated
in decimal forms when there is not enough margin.
1
I. I
u
1
= h−1338u
11
2403u
10
+ · · · + 24722b + 1642, 2813u
11
3694u
10
+
· · · + 49444a 23561, u
12
2u
11
+ · · · 7u 4i
(i) Arc colorings
a
8
=
1
0
a
11
=
0
u
a
9
=
1
u
2
a
1
=
u
u
3
+ u
a
4
=
0.0568926u
11
+ 0.0747108u
10
+ ··· + 2.87250u + 0.476519
0.0541218u
11
+ 0.0972009u
10
+ ··· + 0.203098u 0.0664186
a
3
=
0.00277081u
11
0.0224901u
10
+ ··· + 2.66940u + 0.542937
0.0541218u
11
+ 0.0972009u
10
+ ··· + 0.203098u 0.0664186
a
2
=
0.0205687u
11
+ 0.0812232u
10
+ ··· + 1.83784u + 0.263996
0.273036u
11
+ 0.227126u
10
+ ··· 1.67482u 0.902597
a
7
=
0.0335531u
11
0.0159777u
10
+ ··· 1.36526u + 0.330414
0.0697355u
11
0.157269u
10
+ ··· + 1.27813u + 0.343419
a
5
=
0.0774614u
11
+ 0.155934u
10
+ ··· + 3.71034u + 0.740515
0.218914u
11
+ 0.324327u
10
+ ··· 2.47173u 0.969015
a
6
=
0.182105u
11
0.175188u
10
+ ··· 1.19481u + 0.409554
0.00392363u
11
0.236227u
10
+ ··· + 1.73259u + 0.429415
a
10
=
u
2
+ 1
u
4
2u
2
a
10
=
u
2
+ 1
u
4
2u
2
(ii) Obstruction class = 1
(iii) Cusp Shapes =
43847
49444
u
11
+
112737
49444
u
10
+
32482
12361
u
9
383109
49444
u
8
28567
12361
u
7
+
985
94
u
6
299113
24722
u
5
+
967541
49444
u
4
+
605165
49444
u
3
1852919
49444
u
2
+
20717
49444
u +
92353
12361
2
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
3
, c
4
c
6
, c
7
u
12
u
11
+ ··· + u 1
c
2
u
12
+ 15u
11
+ ··· 7u + 1
c
5
, c
10
u
12
3u
11
+ ··· 30u + 8
c
8
, c
9
, c
11
u
12
+ 2u
11
+ ··· + 7u 4
3
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
3
, c
4
c
6
, c
7
y
12
+ 15y
11
+ ··· 7y + 1
c
2
y
12
37y
11
+ ··· 75y + 1
c
5
, c
10
y
12
+ 3y
11
+ ··· 180y + 64
c
8
, c
9
, c
11
y
12
10y
11
+ ··· 65y + 16
4
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 1.10462
a = 0.677570
b = 0.286848
2.08000 2.69920
u = 0.811259
a = 0.740294
b = 1.25251
2.82934 4.50160
u = 0.038537 + 1.279810I
a = 0.05191 1.51413I
b = 0.22221 1.69295I
13.9790 4.8530I 0.50797 + 2.30086I
u = 0.038537 1.279810I
a = 0.05191 + 1.51413I
b = 0.22221 + 1.69295I
13.9790 + 4.8530I 0.50797 2.30086I
u = 1.51234 + 0.05980I
a = 0.151707 + 0.418299I
b = 0.376488 + 0.828316I
6.26923 1.30619I 9.66269 + 5.18573I
u = 1.51234 0.05980I
a = 0.151707 0.418299I
b = 0.376488 0.828316I
6.26923 + 1.30619I 9.66269 5.18573I
u = 1.41659 + 0.65856I
a = 0.972994 + 0.888579I
b = 0.46036 + 1.59632I
9.7228 + 11.6344I 3.05947 5.63312I
u = 1.41659 0.65856I
a = 0.972994 0.888579I
b = 0.46036 1.59632I
9.7228 11.6344I 3.05947 + 5.63312I
u = 0.312665 + 0.284545I
a = 0.598564 + 1.005440I
b = 0.257303 + 0.306472I
0.367468 0.926038I 6.49064 + 7.55473I
u = 0.312665 0.284545I
a = 0.598564 1.005440I
b = 0.257303 0.306472I
0.367468 + 0.926038I 6.49064 7.55473I
5
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 1.50812 + 0.67127I
a = 0.711581 + 0.645229I
b = 0.06595 + 1.61394I
9.24108 2.07346I 2.05543 + 1.04459I
u = 1.50812 0.67127I
a = 0.711581 0.645229I
b = 0.06595 1.61394I
9.24108 + 2.07346I 2.05543 1.04459I
6
II. I
u
2
= hu
5
u
4
+ u
2
a u
3
+ 2u
2
+ b a 1, u
5
+ 2u
4
+ · · · + 2a
1, u
6
u
5
u
4
+ 2u
3
u + 1i
(i) Arc colorings
a
8
=
1
0
a
11
=
0
u
a
9
=
1
u
2
a
1
=
u
u
3
+ u
a
4
=
a
u
5
+ u
4
u
2
a + u
3
2u
2
+ a + 1
a
3
=
u
5
u
4
+ u
2
a u
3
+ 2u
2
1
u
5
+ u
4
u
2
a + u
3
2u
2
+ a + 1
a
2
=
u
5
a u
4
a + u
5
2u
3
a u
4
+ 2u
2
a 2u
3
+ au + 2u
2
a + 2u 1
2u
5
a 3u
3
a + u
4
2u
3
+ 2au 2u
2
+ 2u + 1
a
7
=
u
5
a u
4
a + u
5
2u
3
a u
4
+ 2u
2
a + au a + 1
u
5
a u
5
2u
3
a + u
4
+ 2u
3
+ au 2u
2
u + 1
a
5
=
u
4
u
2
+ 1
2u
5
+ u
4
+ 4u
3
2u
2
2u + 2
a
6
=
2u
4
+ 2u
2
u 2
4u
5
2u
4
6u
3
+ 4u
2
+ 3u 4
a
10
=
u
2
+ 1
u
4
2u
2
a
10
=
u
2
+ 1
u
4
2u
2
(ii) Obstruction class = 1
(iii) Cusp Shapes = 4u
4
+ 4u
2
4u + 2
7
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
3
, c
4
c
6
, c
7
u
12
+ 3u
11
+ ··· + 12u + 9
c
2
u
12
+ 11u
11
+ ··· + 432u + 81
c
5
, c
8
, c
9
c
10
, c
11
(u
6
+ u
5
u
4
2u
3
+ u + 1)
2
8
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
3
, c
4
c
6
, c
7
y
12
+ 11y
11
+ ··· + 432y + 81
c
2
y
12
21y
11
+ ··· 8100y + 6561
c
5
, c
8
, c
9
c
10
, c
11
(y
6
3y
5
+ 5y
4
4y
3
+ 2y
2
y + 1)
2
9
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
2
1(vol +
1CS) Cusp shape
u = 1.002190 + 0.295542I
a = 1.63266 0.89783I
b = 0.250689 + 0.621966I
1.39926 0.92430I 7.71672 + 0.79423I
u = 1.002190 + 0.295542I
a = 1.31279 1.72080I
b = 0.007520 1.191130I
1.39926 0.92430I 7.71672 + 0.79423I
u = 1.002190 0.295542I
a = 1.63266 + 0.89783I
b = 0.250689 0.621966I
1.39926 + 0.92430I 7.71672 0.79423I
u = 1.002190 0.295542I
a = 1.31279 + 1.72080I
b = 0.007520 + 1.191130I
1.39926 + 0.92430I 7.71672 0.79423I
u = 0.428243 + 0.664531I
a = 0.0287467 + 0.1266650I
b = 0.793458 0.920250I
5.18047 0.92430I 0.283283 + 0.794226I
u = 0.428243 + 0.664531I
a = 1.13932 + 1.53189I
b = 0.12359 + 1.51263I
5.18047 0.92430I 0.283283 + 0.794226I
u = 0.428243 0.664531I
a = 0.0287467 0.1266650I
b = 0.793458 + 0.920250I
5.18047 + 0.92430I 0.283283 0.794226I
u = 0.428243 0.664531I
a = 1.13932 1.53189I
b = 0.12359 1.51263I
5.18047 + 0.92430I 0.283283 0.794226I
u = 1.073950 + 0.558752I
a = 0.598264 + 0.445195I
b = 1.172060 + 0.407463I
3.28987 + 5.69302I 4.00000 5.51057I
u = 1.073950 + 0.558752I
a = 0.888970 1.003950I
b = 0.33089 1.60761I
3.28987 + 5.69302I 4.00000 5.51057I
10
Solutions to I
u
2
1(vol +
1CS) Cusp shape
u = 1.073950 0.558752I
a = 0.598264 0.445195I
b = 1.172060 0.407463I
3.28987 5.69302I 4.00000 + 5.51057I
u = 1.073950 0.558752I
a = 0.888970 + 1.003950I
b = 0.33089 + 1.60761I
3.28987 5.69302I 4.00000 + 5.51057I
11
III. I
u
3
= h−au + b a + 1, a
2
+ 2au 4a 6u + 10, u
2
u 1i
(i) Arc colorings
a
8
=
1
0
a
11
=
0
u
a
9
=
1
u 1
a
1
=
u
u 1
a
4
=
a
au + a 1
a
3
=
au + 1
au + a 1
a
2
=
au + u + 1
au + a u 2
a
7
=
a + 2u 3
1
a
5
=
au + a 1
0
a
6
=
2au a + u
3au + 2a u 1
a
10
=
u
u
a
10
=
u
u
(ii) Obstruction class = 1
(iii) Cusp Shapes = 4
12
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
3
, c
4
c
6
, c
7
(u
2
+ 1)
2
c
2
(u + 1)
4
c
5
, c
10
u
4
+ 3u
2
+ 1
c
8
, c
9
(u
2
u 1)
2
c
11
(u
2
+ u 1)
2
13
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
3
, c
4
c
6
, c
7
(y + 1)
4
c
2
(y 1)
4
c
5
, c
10
(y
2
+ 3y + 1)
2
c
8
, c
9
, c
11
(y
2
3y + 1)
2
14
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
3
1(vol +
1CS) Cusp shape
u = 0.618034
a = 2.61803 + 2.61803I
b = 1.000000I
2.30291 4.00000
u = 0.618034
a = 2.61803 2.61803I
b = 1.000000I
2.30291 4.00000
u = 1.61803
a = 0.381966 + 0.381966I
b = 1.000000I
5.59278 4.00000
u = 1.61803
a = 0.381966 0.381966I
b = 1.000000I
5.59278 4.00000
15
IV. I
u
4
= hb 1, 2a + 1, u + 1i
(i) Arc colorings
a
8
=
1
0
a
11
=
0
1
a
9
=
1
1
a
1
=
1
0
a
4
=
0.5
1
a
3
=
1.5
1
a
2
=
0.5
1
a
7
=
0.5
1
a
5
=
0
2
a
6
=
0
2
a
10
=
0
1
a
10
=
0
1
(ii) Obstruction class = 1
(iii) Cusp Shapes = 14.25
16
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
3
, c
4
c
8
, c
9
u + 1
c
2
, c
6
, c
7
c
11
u 1
c
5
, c
10
u
17
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
2
, c
3
c
4
, c
6
, c
7
c
8
, c
9
, c
11
y 1
c
5
, c
10
y
18
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
4
1(vol +
1CS) Cusp shape
u = 1.00000
a = 0.500000
b = 1.00000
3.28987 14.2500
19
V. u-Polynomials
Crossings u-Polynomials at each crossing
c
1
, c
3
, c
4
(u + 1)(u
2
+ 1)
2
(u
12
u
11
+ ··· + u 1)(u
12
+ 3u
11
+ ··· + 12u + 9)
c
2
(u 1)(u + 1)
4
(u
12
+ 11u
11
+ ··· + 432u + 81)
· (u
12
+ 15u
11
+ ··· 7u + 1)
c
5
, c
10
u(u
4
+ 3u
2
+ 1)(u
6
+ u
5
+ ··· + u + 1)
2
(u
12
3u
11
+ ··· 30u + 8)
c
6
, c
7
(u 1)(u
2
+ 1)
2
(u
12
u
11
+ ··· + u 1)(u
12
+ 3u
11
+ ··· + 12u + 9)
c
8
, c
9
(u + 1)(u
2
u 1)
2
(u
6
+ u
5
u
4
2u
3
+ u + 1)
2
· (u
12
+ 2u
11
+ ··· + 7u 4)
c
11
(u 1)(u
2
+ u 1)
2
(u
6
+ u
5
u
4
2u
3
+ u + 1)
2
· (u
12
+ 2u
11
+ ··· + 7u 4)
20
VI. Riley Polynomials
Crossings Riley Polynomials at each crossing
c
1
, c
3
, c
4
c
6
, c
7
(y 1)(y + 1)
4
(y
12
+ 11y
11
+ ··· + 432y + 81)
· (y
12
+ 15y
11
+ ··· 7y + 1)
c
2
((y 1)
5
)(y
12
37y
11
+ ··· 75y + 1)
· (y
12
21y
11
+ ··· 8100y + 6561)
c
5
, c
10
y(y
2
+ 3y + 1)
2
(y
6
3y
5
+ 5y
4
4y
3
+ 2y
2
y + 1)
2
· (y
12
+ 3y
11
+ ··· 180y + 64)
c
8
, c
9
, c
11
(y 1)(y
2
3y + 1)
2
(y
6
3y
5
+ 5y
4
4y
3
+ 2y
2
y + 1)
2
· (y
12
10y
11
+ ··· 65y + 16)
21