11n
106
(K11n
106
)
A knot diagram
1
Linearized knot diagam
5 1 7 8 2 11 9 5 4 6 7
Solving Sequence
5,8 2,9
1 4 7 3 11 6 10
c
8
c
1
c
4
c
7
c
3
c
11
c
6
c
10
c
2
, c
5
, c
9
Ideals for irreducible components
2
of X
par
I
u
1
= h−3u
16
3u
15
+ ··· + 4b + 4,
u
16
5u
14
+ 2u
13
+ 11u
12
8u
11
8u
10
+ 14u
9
7u
8
6u
7
+ 18u
6
8u
5
8u
4
+ 12u
3
2u
2
+ 4a 2u + 2,
u
17
+ 2u
16
3u
15
7u
14
+ 5u
13
+ 12u
12
u
10
u
9
13u
8
+ 18u
6
+ 10u
5
+ 4u
4
+ 4u
3
2u
2
4u 2i
I
u
2
= hu
3
u
2
+ b u + 1, u
3
+ 2a + 2u, u
4
2u
2
+ 2i
I
u
3
= h−a
2
+ b + a, a
3
a 1, u 1i
I
v
1
= ha, b + 1, v 1i
* 4 irreducible components of dim
C
= 0, with total 25 representations.
1
The image of knot diagram is generated by the software Draw programme developed by An-
drew Bartholomew(http://www.layer8.co.uk/maths/draw/index.htm#Running-draw), where we modi-
fied some parts for our purpose(https://github.com/CATsTAILs/LinksPainter).
2
All coefficients of polynomials are rational numbers. But the coefficients are sometimes approximated
in decimal forms when there is not enough margin.
1
I.
I
u
1
= h−3u
16
3u
15
+· · ·+4b+4, u
16
5u
14
+· · ·+4a+2, u
17
+2u
16
+· · ·4u2i
(i) Arc colorings
a
5
=
0
u
a
8
=
1
0
a
2
=
1
4
u
16
+
5
4
u
14
+ ··· +
1
2
u
1
2
3
4
u
16
+
3
4
u
15
+ ···
1
2
u 1
a
9
=
1
u
2
a
1
=
1
4
u
16
+
5
4
u
14
+ ··· +
1
2
u
1
2
5
4
u
16
+
3
2
u
15
+ ··· 2u 2
a
4
=
u
u
a
7
=
u
2
+ 1
u
4
a
3
=
u
7
+ 2u
5
2u
3
u
9
u
7
+ u
5
+ u
a
11
=
1
2
u
10
+
3
2
u
8
+ ··· + u
2
1
1
4
u
15
u
13
+ ··· +
1
2
u
2
+
1
2
u
a
6
=
1
4
u
15
+ u
13
+ ···
1
2
u + 1
1
4
u
15
u
13
+ ··· +
1
2
u
2
+
1
2
u
a
10
=
u
4
+ u
2
1
u
4
a
10
=
u
4
+ u
2
1
u
4
(ii) Obstruction class = 1
(iii) Cusp Shapes = 2u
16
+ 10u
14
2u
13
22u
12
+ 8u
11
+ 16u
10
14u
9
+ 14u
8
+
10u
7
36u
6
+ 16u
4
6u
3
+ 4u
2
+ 10u
2
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
5
u
17
+ 2u
16
+ ··· + 11u 5
c
2
u
17
2u
16
+ ··· + 121u + 25
c
3
u
17
+ 4u
16
+ ··· 7540u 3866
c
4
, c
8
u
17
+ 2u
16
+ ··· 4u 2
c
6
, c
10
, c
11
u
17
2u
16
+ ··· 17u 5
c
7
u
17
10u
16
+ ··· + 8u 4
c
9
u
17
3u
16
+ ··· + 32u 46
3
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
5
y
17
+ 2y
16
+ ··· + 121y 25
c
2
y
17
+ 50y
16
+ ··· + 40441y 625
c
3
y
17
+ 70y
16
+ ··· + 33732920y 14945956
c
4
, c
8
y
17
10y
16
+ ··· + 8y 4
c
6
, c
10
, c
11
y
17
30y
16
+ ··· + 329y 25
c
7
y
17
6y
16
+ ··· 96y 16
c
9
y
17
+ 31y
16
+ ··· + 14640y 2116
4
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.076903 + 1.006450I
a = 1.28833 + 1.08624I
b = 0.344784 0.561209I
13.5757 4.4662I 2.93957 + 1.91782I
u = 0.076903 1.006450I
a = 1.28833 1.08624I
b = 0.344784 + 0.561209I
13.5757 + 4.4662I 2.93957 1.91782I
u = 0.995392 + 0.405067I
a = 0.702879 + 0.603320I
b = 0.30791 1.68630I
0.05634 3.87007I 0.55814 + 7.00568I
u = 0.995392 0.405067I
a = 0.702879 0.603320I
b = 0.30791 + 1.68630I
0.05634 + 3.87007I 0.55814 7.00568I
u = 0.194679 + 0.752552I
a = 0.913683 + 0.406237I
b = 0.274898 + 0.378400I
2.46422 + 0.66350I 3.92785 1.28554I
u = 0.194679 0.752552I
a = 0.913683 0.406237I
b = 0.274898 0.378400I
2.46422 0.66350I 3.92785 + 1.28554I
u = 1.122330 + 0.557673I
a = 0.129300 + 0.669933I
b = 0.93908 1.59767I
5.04445 + 4.17066I 6.60682 3.70952I
u = 1.122330 0.557673I
a = 0.129300 0.669933I
b = 0.93908 + 1.59767I
5.04445 4.17066I 6.60682 + 3.70952I
u = 0.710570
a = 0.516138
b = 1.01848
1.26530 7.99450
u = 1.260410 + 0.354016I
a = 0.013562 0.903193I
b = 0.46322 + 2.04947I
6.78062 4.50780I 6.98768 + 3.92800I
5
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 1.260410 0.354016I
a = 0.013562 + 0.903193I
b = 0.46322 2.04947I
6.78062 + 4.50780I 6.98768 3.92800I
u = 0.440513 + 0.412959I
a = 1.16799 0.87598I
b = 0.426652 + 0.425827I
1.48592 + 0.26904I 6.62187 0.62877I
u = 0.440513 0.412959I
a = 1.16799 + 0.87598I
b = 0.426652 0.425827I
1.48592 0.26904I 6.62187 + 0.62877I
u = 1.299750 + 0.543064I
a = 0.547862 1.121000I
b = 0.48688 + 2.87606I
17.3459 + 9.9963I 5.48062 4.80381I
u = 1.299750 0.543064I
a = 0.547862 + 1.121000I
b = 0.48688 2.87606I
17.3459 9.9963I 5.48062 + 4.80381I
u = 1.35263 + 0.45076I
a = 1.065780 + 0.664446I
b = 1.25795 1.54860I
18.0935 0.6930I 6.24024 + 0.75440I
u = 1.35263 0.45076I
a = 1.065780 0.664446I
b = 1.25795 + 1.54860I
18.0935 + 0.6930I 6.24024 0.75440I
6
II. I
u
2
= hu
3
u
2
+ b u + 1, u
3
+ 2a + 2u, u
4
2u
2
+ 2i
(i) Arc colorings
a
5
=
0
u
a
8
=
1
0
a
2
=
1
2
u
3
u
u
3
+ u
2
+ u 1
a
9
=
1
u
2
a
1
=
1
2
u
3
u
u
3
+ u
2
+ 2u 1
a
4
=
u
u
a
7
=
u
2
+ 1
2u
2
2
a
3
=
0
u
a
11
=
1
2
u
3
+ u
2
u 1
u
3
u
2
+ 2u + 1
a
6
=
1
2
u
3
u
u
3
+ u
2
+ 2u 1
a
10
=
u
2
1
2u
2
+ 2
a
10
=
u
2
1
2u
2
+ 2
(ii) Obstruction class = 1
(iii) Cusp Shapes = 4u
2
+ 8
7
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
2
, c
10
c
11
(u + 1)
4
c
3
, c
9
u
4
+ 2u
2
+ 2
c
4
, c
8
u
4
2u
2
+ 2
c
5
, c
6
(u 1)
4
c
7
(u
2
+ 2u + 2)
2
8
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
2
, c
5
c
6
, c
10
, c
11
(y 1)
4
c
3
, c
9
(y
2
+ 2y + 2)
2
c
4
, c
8
(y
2
2y + 2)
2
c
7
(y
2
+ 4)
2
9
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
2
1(vol +
1CS) Cusp shape
u = 1.098680 + 0.455090I
a = 0.776887 + 0.321797I
b = 0.455090 0.098684I
2.46740 + 3.66386I 4.00000 4.00000I
u = 1.098680 0.455090I
a = 0.776887 0.321797I
b = 0.455090 + 0.098684I
2.46740 3.66386I 4.00000 + 4.00000I
u = 1.098680 + 0.455090I
a = 0.776887 + 0.321797I
b = 0.45509 2.09868I
2.46740 3.66386I 4.00000 + 4.00000I
u = 1.098680 0.455090I
a = 0.776887 0.321797I
b = 0.45509 + 2.09868I
2.46740 + 3.66386I 4.00000 4.00000I
10
III. I
u
3
= h−a
2
+ b + a, a
3
a 1, u 1i
(i) Arc colorings
a
5
=
0
1
a
8
=
1
0
a
2
=
a
a
2
a
a
9
=
1
1
a
1
=
a
a
2
2a
a
4
=
1
1
a
7
=
0
1
a
3
=
1
2
a
11
=
a
a
2
a
a
6
=
a
2
a
2
a
a
10
=
1
1
a
10
=
1
1
(ii) Obstruction class = 1
(iii) Cusp Shapes = 6
11
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
5
, c
6
c
10
, c
11
u
3
u + 1
c
2
u
3
+ 2u
2
+ u + 1
c
3
, c
4
, c
7
c
8
(u 1)
3
c
9
u
3
12
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
5
, c
6
c
10
, c
11
y
3
2y
2
+ y 1
c
2
y
3
2y
2
3y 1
c
3
, c
4
, c
7
c
8
(y 1)
3
c
9
y
3
13
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
3
1(vol +
1CS) Cusp shape
u = 1.00000
a = 0.662359 + 0.562280I
b = 0.78492 1.30714I
1.64493 6.00000
u = 1.00000
a = 0.662359 0.562280I
b = 0.78492 + 1.30714I
1.64493 6.00000
u = 1.00000
a = 1.32472
b = 0.430160
1.64493 6.00000
14
IV. I
v
1
= ha, b + 1, v 1i
(i) Arc colorings
a
5
=
1
0
a
8
=
1
0
a
2
=
0
1
a
9
=
1
0
a
1
=
1
1
a
4
=
1
0
a
7
=
1
0
a
3
=
1
0
a
11
=
0
1
a
6
=
1
1
a
10
=
1
0
a
10
=
1
0
(ii) Obstruction class = 1
(iii) Cusp Shapes = 0
15
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
10
, c
11
u 1
c
2
, c
5
, c
6
u + 1
c
3
, c
4
, c
7
c
8
, c
9
u
16
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
2
, c
5
c
6
, c
10
, c
11
y 1
c
3
, c
4
, c
7
c
8
, c
9
y
17
(vi) Complex Volumes and Cusp Shapes
Solutions to I
v
1
1(vol +
1CS) Cusp shape
v = 1.00000
a = 0
b = 1.00000
0 0
18
V. u-Polynomials
Crossings u-Polynomials at each crossing
c
1
(u 1)(u + 1)
4
(u
3
u + 1)(u
17
+ 2u
16
+ ··· + 11u 5)
c
2
((u + 1)
5
)(u
3
+ 2u
2
+ u + 1)(u
17
2u
16
+ ··· + 121u + 25)
c
3
u(u 1)
3
(u
4
+ 2u
2
+ 2)(u
17
+ 4u
16
+ ··· 7540u 3866)
c
4
, c
8
u(u 1)
3
(u
4
2u
2
+ 2)(u
17
+ 2u
16
+ ··· 4u 2)
c
5
((u 1)
4
)(u + 1)(u
3
u + 1)(u
17
+ 2u
16
+ ··· + 11u 5)
c
6
((u 1)
4
)(u + 1)(u
3
u + 1)(u
17
2u
16
+ ··· 17u 5)
c
7
u(u 1)
3
(u
2
+ 2u + 2)
2
(u
17
10u
16
+ ··· + 8u 4)
c
9
u
4
(u
4
+ 2u
2
+ 2)(u
17
3u
16
+ ··· + 32u 46)
c
10
, c
11
(u 1)(u + 1)
4
(u
3
u + 1)(u
17
2u
16
+ ··· 17u 5)
19
VI. Riley Polynomials
Crossings Riley Polynomials at each crossing
c
1
, c
5
((y 1)
5
)(y
3
2y
2
+ y 1)(y
17
+ 2y
16
+ ··· + 121y 25)
c
2
((y 1)
5
)(y
3
2y
2
3y 1)(y
17
+ 50y
16
+ ··· + 40441y 625)
c
3
y(y 1)
3
(y
2
+ 2y + 2)
2
· (y
17
+ 70y
16
+ ··· + 33732920y 14945956)
c
4
, c
8
y(y 1)
3
(y
2
2y + 2)
2
(y
17
10y
16
+ ··· + 8y 4)
c
6
, c
10
, c
11
((y 1)
5
)(y
3
2y
2
+ y 1)(y
17
30y
16
+ ··· + 329y 25)
c
7
y(y 1)
3
(y
2
+ 4)
2
(y
17
6y
16
+ ··· 96y 16)
c
9
y
4
(y
2
+ 2y + 2)
2
(y
17
+ 31y
16
+ ··· + 14640y 2116)
20