11n
109
(K11n
109
)
A knot diagram
1
Linearized knot diagam
6 1 7 9 2 10 1 4 5 7 4
Solving Sequence
2,5 6,10
7 1 8 9 4 3 11
c
5
c
6
c
1
c
7
c
9
c
4
c
3
c
11
c
2
, c
8
, c
10
Ideals for irreducible components
2
of X
par
I
u
1
= h3.53910 × 10
25
u
37
4.74008 × 10
25
u
36
+ ··· + 3.48267 × 10
25
b 4.36228 × 10
24
,
2.88601 × 10
25
u
37
3.57200 × 10
25
u
36
+ ··· + 3.48267 × 10
25
a + 4.29759 × 10
24
, u
38
2u
37
+ ··· 3u + 1i
I
u
2
= h−u
9
3u
7
+ u
6
4u
5
+ 2u
4
3u
3
+ u
2
+ b + 1,
u
9
+ 3u
8
+ 6u
7
+ 10u
6
+ 12u
5
+ 14u
4
+ 12u
3
+ 12u
2
+ a + 8u + 4,
u
10
+ u
9
+ 4u
8
+ 3u
7
+ 7u
6
+ 4u
5
+ 7u
4
+ 4u
3
+ 4u
2
+ u + 1i
* 2 irreducible components of dim
C
= 0, with total 48 representations.
1
The image of knot diagram is generated by the software Draw programme developed by An-
drew Bartholomew(http://www.layer8.co.uk/maths/draw/index.htm#Running-draw), where we modi-
fied some parts for our purpose(https://github.com/CATsTAILs/LinksPainter).
2
All coefficients of polynomials are rational numbers. But the coefficients are sometimes approximated
in decimal forms when there is not enough margin.
1
I.
I
u
1
= h3.54 × 10
25
u
37
4.74 × 10
25
u
36
+ · · · + 3.48 × 10
25
b 4.36 × 10
24
, 2.89 ×
10
25
u
37
3.57×10
25
u
36
+· · ·+3.48×10
25
a+4.30×10
24
, u
38
2u
37
+· · ·3u+1i
(i) Arc colorings
a
2
=
0
u
a
5
=
1
0
a
6
=
1
u
2
a
10
=
0.828678u
37
+ 1.02565u
36
+ ··· 2.81126u 0.123399
1.01620u
37
+ 1.36105u
36
+ ··· 0.588254u + 0.125257
a
7
=
0.631271u
37
+ 0.581742u
36
+ ··· 2.12748u + 3.40130
0.642147u
37
+ 1.04198u
36
+ ··· 0.717938u + 0.0244084
a
1
=
u
u
3
+ u
a
8
=
0.607524u
37
0.145250u
36
+ ··· + 0.310068u + 2.19514
0.307663u
37
+ 0.666840u
36
+ ··· 0.855780u + 0.456085
a
9
=
0.187524u
37
0.335397u
36
+ ··· 2.22301u 0.248656
1.01620u
37
+ 1.36105u
36
+ ··· 0.588254u + 0.125257
a
4
=
1.27334u
37
+ 1.88196u
36
+ ··· + 0.0209510u 0.151656
1.28508u
37
2.98814u
36
+ ··· + 3.97779u 1.10711
a
3
=
u
3
u
5
+ u
3
+ u
a
11
=
0.0155744u
37
+ 0.751097u
36
+ ··· 1.99782u + 0.341364
1.31911u
37
+ 1.47526u
36
+ ··· 3.17447u + 0.821375
a
11
=
0.0155744u
37
+ 0.751097u
36
+ ··· 1.99782u + 0.341364
1.31911u
37
+ 1.47526u
36
+ ··· 3.17447u + 0.821375
(ii) Obstruction class = 1
(iii) Cusp Shapes =
134839754017820031393971870
34826691050833540478655473
u
37
+
3307262072424404195903844
440844190516880259223487
u
36
+
···
433267787549488445549936384
34826691050833540478655473
u +
614901013376164862123029830
34826691050833540478655473
2
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
5
u
38
2u
37
+ ··· 3u + 1
c
2
u
38
+ 20u
37
+ ··· 7u + 1
c
3
u
38
u
37
+ ··· 130u 29
c
4
, c
8
, c
9
u
38
+ u
37
+ ··· 24u 19
c
6
, c
10
u
38
3u
37
+ ··· + 94u 11
c
7
u
38
+ u
37
+ ··· 39u 2
c
11
u
38
2u
37
+ ··· + 31u + 1
3
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
5
y
38
+ 20y
37
+ ··· 7y + 1
c
2
y
38
+ 4y
37
+ ··· 95y + 1
c
3
y
38
+ 41y
37
+ ··· + 1138y + 841
c
4
, c
8
, c
9
y
38
35y
37
+ ··· 6y + 361
c
6
, c
10
y
38
17y
37
+ ··· 1686y + 121
c
7
y
38
+ 37y
37
+ ··· 325y + 4
c
11
y
38
38y
37
+ ··· 415y + 1
4
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.198690 + 0.927706I
a = 0.29365 1.42984I
b = 0.507231 0.501686I
1.65932 + 1.72508I 3.99615 5.00557I
u = 0.198690 0.927706I
a = 0.29365 + 1.42984I
b = 0.507231 + 0.501686I
1.65932 1.72508I 3.99615 + 5.00557I
u = 0.379743 + 0.859856I
a = 0.035838 + 1.400050I
b = 0.285476 + 0.554000I
1.30138 1.64549I 4.54049 1.93386I
u = 0.379743 0.859856I
a = 0.035838 1.400050I
b = 0.285476 0.554000I
1.30138 + 1.64549I 4.54049 + 1.93386I
u = 0.437061 + 1.002290I
a = 0.802004 0.659495I
b = 1.178350 0.751371I
3.43318 + 1.20443I 6.92259 2.66519I
u = 0.437061 1.002290I
a = 0.802004 + 0.659495I
b = 1.178350 + 0.751371I
3.43318 1.20443I 6.92259 + 2.66519I
u = 0.668607 + 0.872893I
a = 0.468782 + 0.686829I
b = 0.086247 + 0.537690I
1.01360 + 2.58424I 2.68887 3.99949I
u = 0.668607 0.872893I
a = 0.468782 0.686829I
b = 0.086247 0.537690I
1.01360 2.58424I 2.68887 + 3.99949I
u = 0.496586 + 1.000340I
a = 0.81802 + 1.31551I
b = 1.39385 + 0.31403I
3.05076 + 4.70281I 7.22690 4.71362I
u = 0.496586 1.000340I
a = 0.81802 1.31551I
b = 1.39385 0.31403I
3.05076 4.70281I 7.22690 + 4.71362I
5
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 1.081330 + 0.386328I
a = 0.216812 0.071474I
b = 1.43091 0.33793I
1.95602 6.72677I 10.60803 + 3.77299I
u = 1.081330 0.386328I
a = 0.216812 + 0.071474I
b = 1.43091 + 0.33793I
1.95602 + 6.72677I 10.60803 3.77299I
u = 0.775393 + 0.236076I
a = 0.744379 0.266250I
b = 0.299152 0.795595I
3.53482 + 2.58667I 7.16756 2.58418I
u = 0.775393 0.236076I
a = 0.744379 + 0.266250I
b = 0.299152 + 0.795595I
3.53482 2.58667I 7.16756 + 2.58418I
u = 0.913408 + 0.776527I
a = 0.296533 0.156951I
b = 1.287170 + 0.114756I
5.31271 0.53174I 10.57597 + 0.24868I
u = 0.913408 0.776527I
a = 0.296533 + 0.156951I
b = 1.287170 0.114756I
5.31271 + 0.53174I 10.57597 0.24868I
u = 0.447680 + 0.663750I
a = 0.97208 2.47509I
b = 1.110300 + 0.132355I
1.90577 0.72497I 8.59505 1.33995I
u = 0.447680 0.663750I
a = 0.97208 + 2.47509I
b = 1.110300 0.132355I
1.90577 + 0.72497I 8.59505 + 1.33995I
u = 0.526939 + 1.137220I
a = 0.54259 1.42286I
b = 1.53921 0.16530I
5.23331 4.18634I 5.68349 + 3.29449I
u = 0.526939 1.137220I
a = 0.54259 + 1.42286I
b = 1.53921 + 0.16530I
5.23331 + 4.18634I 5.68349 3.29449I
6
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.784887 + 0.992111I
a = 0.32772 + 1.44641I
b = 1.252110 + 0.274462I
4.61276 5.70694I 9.04865 + 6.07255I
u = 0.784887 0.992111I
a = 0.32772 1.44641I
b = 1.252110 0.274462I
4.61276 + 5.70694I 9.04865 6.07255I
u = 0.561660 + 1.148650I
a = 0.34487 1.38992I
b = 0.258106 1.087690I
6.14363 7.57123I 4.89087 + 5.76194I
u = 0.561660 1.148650I
a = 0.34487 + 1.38992I
b = 0.258106 + 1.087690I
6.14363 + 7.57123I 4.89087 5.76194I
u = 0.297248 + 1.257890I
a = 0.693796 + 0.789863I
b = 0.164859 + 0.672738I
8.06788 1.04561I 1.73854 + 0.76531I
u = 0.297248 1.257890I
a = 0.693796 0.789863I
b = 0.164859 0.672738I
8.06788 + 1.04561I 1.73854 0.76531I
u = 0.693371
a = 0.324535
b = 1.38702
7.32047 11.7760
u = 0.534109 + 1.201300I
a = 0.76686 + 1.35110I
b = 1.196420 + 0.245037I
4.11680 + 4.64818I 7.00000 4.11714I
u = 0.534109 1.201300I
a = 0.76686 1.35110I
b = 1.196420 0.245037I
4.11680 4.64818I 7.00000 + 4.11714I
u = 0.326007 + 0.583311I
a = 0.52323 2.59696I
b = 0.878482 0.628167I
2.08165 + 2.22554I 9.62442 6.36612I
7
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.326007 0.583311I
a = 0.52323 + 2.59696I
b = 0.878482 + 0.628167I
2.08165 2.22554I 9.62442 + 6.36612I
u = 0.698047 + 1.223380I
a = 0.14107 1.57898I
b = 1.47736 0.45823I
0.64182 + 13.08690I 0
u = 0.698047 1.223380I
a = 0.14107 + 1.57898I
b = 1.47736 + 0.45823I
0.64182 13.08690I 0
u = 0.19948 + 1.53203I
a = 0.874606 + 0.019930I
b = 1.233390 + 0.241654I
4.80130 2.15880I 0
u = 0.19948 1.53203I
a = 0.874606 0.019930I
b = 1.233390 0.241654I
4.80130 + 2.15880I 0
u = 0.337441 + 0.249883I
a = 1.16350 + 0.97340I
b = 1.59455 + 0.00504I
7.79085 0.03851I 8.05729 1.80582I
u = 0.337441 0.249883I
a = 1.16350 0.97340I
b = 1.59455 0.00504I
7.79085 + 0.03851I 8.05729 + 1.80582I
u = 0.284870
a = 0.696967
b = 0.455407
0.644934 15.5790
8
II.
I
u
2
= h−u
9
3u
7
+ · · · + b + 1, u
9
+ 3u
8
+ · · · + a + 4, u
10
+ u
9
+ · · · + u + 1i
(i) Arc colorings
a
2
=
0
u
a
5
=
1
0
a
6
=
1
u
2
a
10
=
u
9
3u
8
6u
7
10u
6
12u
5
14u
4
12u
3
12u
2
8u 4
u
9
+ 3u
7
u
6
+ 4u
5
2u
4
+ 3u
3
u
2
1
a
7
=
2u
9
+ u
8
+ 6u
7
+ u
6
+ 8u
5
u
4
+ 6u
3
+ u 2
u
8
+ 3u
6
+ 4u
4
+ 2u
2
+ u
a
1
=
u
u
3
+ u
a
8
=
u
9
+ 3u
7
u
6
+ 4u
5
3u
4
+ 3u
3
2u
2
2
u
8
+ 3u
6
+ 4u
4
+ 3u
2
+ u
a
9
=
2u
9
3u
8
9u
7
9u
6
16u
5
12u
4
15u
3
11u
2
8u 3
u
9
+ 3u
7
u
6
+ 4u
5
2u
4
+ 3u
3
u
2
1
a
4
=
u
9
+ 3u
8
+ 5u
7
+ 9u
6
+ 9u
5
+ 12u
4
+ 8u
3
+ 10u
2
+ 6u + 2
u
9
+ u
8
+ 4u
7
+ 3u
6
+ 7u
5
+ 4u
4
+ 7u
3
+ 4u
2
+ 3u + 2
a
3
=
u
3
u
5
+ u
3
+ u
a
11
=
2u
9
5u
8
10u
7
16u
6
18u
5
22u
4
17u
3
19u
2
12u 5
u
7
u
6
3u
5
2u
4
3u
3
2u
2
2u 2
a
11
=
2u
9
5u
8
10u
7
16u
6
18u
5
22u
4
17u
3
19u
2
12u 5
u
7
u
6
3u
5
2u
4
3u
3
2u
2
2u 2
(ii) Obstruction class = 1
(iii) Cusp Shapes = 6u
9
+ u
8
+ 19u
7
u
6
+ 26u
5
10u
4
+ 20u
3
9u
2
+ 2u
9
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
u
10
u
9
+ 4u
8
3u
7
+ 7u
6
4u
5
+ 7u
4
4u
3
+ 4u
2
u + 1
c
2
u
10
+ 7u
9
+ ··· + 7u + 1
c
3
u
10
+ 2u
8
+ u
7
4u
6
2u
5
2u
4
2u
3
+ 8u
2
2u + 1
c
4
u
10
6u
8
u
7
+ 13u
6
+ 4u
5
12u
4
5u
3
+ 4u
2
+ 2u + 1
c
5
u
10
+ u
9
+ 4u
8
+ 3u
7
+ 7u
6
+ 4u
5
+ 7u
4
+ 4u
3
+ 4u
2
+ u + 1
c
6
u
10
2u
9
u
8
+ 3u
7
+ u
5
2u
4
2u
3
+ 2u
2
+ 1
c
7
u
10
+ 2u
8
2u
7
2u
6
+ u
5
+ 3u
3
u
2
2u + 1
c
8
, c
9
u
10
6u
8
+ u
7
+ 13u
6
4u
5
12u
4
+ 5u
3
+ 4u
2
2u + 1
c
10
u
10
+ 2u
9
u
8
3u
7
u
5
2u
4
+ 2u
3
+ 2u
2
+ 1
c
11
u
10
3u
9
+ u
8
+ 5u
7
7u
6
+ 3u
5
+ 4u
4
7u
3
+ 6u
2
3u + 1
10
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
5
y
10
+ 7y
9
+ ··· + 7y + 1
c
2
y
10
y
9
+ ··· 5y + 1
c
3
y
10
+ 4y
9
+ ··· + 12y + 1
c
4
, c
8
, c
9
y
10
12y
9
+ ··· + 4y + 1
c
6
, c
10
y
10
6y
9
+ 13y
8
9y
7
6y
6
+ 9y
5
+ 6y
4
12y
3
+ 4y + 1
c
7
y
10
+ 4y
9
12y
7
+ 6y
6
+ 9y
5
6y
4
9y
3
+ 13y
2
6y + 1
c
11
y
10
7y
9
+ 17y
8
13y
7
3y
6
+ y
5
+ 6y
4
+ 3y
3
+ 2y
2
+ 3y + 1
11
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
2
1(vol +
1CS) Cusp shape
u = 0.591573 + 0.895458I
a = 0.062941 + 0.916484I
b = 0.162645 + 0.362811I
1.88316 + 2.32533I 12.32535 3.44072I
u = 0.591573 0.895458I
a = 0.062941 0.916484I
b = 0.162645 0.362811I
1.88316 2.32533I 12.32535 + 3.44072I
u = 0.587969 + 0.580983I
a = 0.270490 0.170382I
b = 1.56713 + 0.08593I
8.26505 0.63915I 14.5970 + 5.3987I
u = 0.587969 0.580983I
a = 0.270490 + 0.170382I
b = 1.56713 0.08593I
8.26505 + 0.63915I 14.5970 5.3987I
u = 0.642090 + 1.139230I
a = 0.42175 + 1.41771I
b = 1.43000 + 0.16541I
6.43677 4.34705I 13.62063 + 3.59101I
u = 0.642090 1.139230I
a = 0.42175 1.41771I
b = 1.43000 0.16541I
6.43677 + 4.34705I 13.62063 3.59101I
u = 0.059179 + 1.329340I
a = 0.597845 + 0.216685I
b = 0.995882 0.290486I
5.58838 1.13850I 4.94587 0.33361I
u = 0.059179 1.329340I
a = 0.597845 0.216685I
b = 0.995882 + 0.290486I
5.58838 + 1.13850I 4.94587 + 0.33361I
u = 0.079307 + 0.642927I
a = 0.84267 3.52089I
b = 0.970365 0.458151I
2.77192 + 1.74853I 1.51113 2.06464I
u = 0.079307 0.642927I
a = 0.84267 + 3.52089I
b = 0.970365 + 0.458151I
2.77192 1.74853I 1.51113 + 2.06464I
12
III. u-Polynomials
Crossings u-Polynomials at each crossing
c
1
(u
10
u
9
+ 4u
8
3u
7
+ 7u
6
4u
5
+ 7u
4
4u
3
+ 4u
2
u + 1)
· (u
38
2u
37
+ ··· 3u + 1)
c
2
(u
10
+ 7u
9
+ ··· + 7u + 1)(u
38
+ 20u
37
+ ··· 7u + 1)
c
3
(u
10
+ 2u
8
+ u
7
4u
6
2u
5
2u
4
2u
3
+ 8u
2
2u + 1)
· (u
38
u
37
+ ··· 130u 29)
c
4
(u
10
6u
8
u
7
+ 13u
6
+ 4u
5
12u
4
5u
3
+ 4u
2
+ 2u + 1)
· (u
38
+ u
37
+ ··· 24u 19)
c
5
(u
10
+ u
9
+ 4u
8
+ 3u
7
+ 7u
6
+ 4u
5
+ 7u
4
+ 4u
3
+ 4u
2
+ u + 1)
· (u
38
2u
37
+ ··· 3u + 1)
c
6
(u
10
2u
9
u
8
+ 3u
7
+ u
5
2u
4
2u
3
+ 2u
2
+ 1)
· (u
38
3u
37
+ ··· + 94u 11)
c
7
(u
10
+ 2u
8
2u
7
2u
6
+ u
5
+ 3u
3
u
2
2u + 1)
· (u
38
+ u
37
+ ··· 39u 2)
c
8
, c
9
(u
10
6u
8
+ u
7
+ 13u
6
4u
5
12u
4
+ 5u
3
+ 4u
2
2u + 1)
· (u
38
+ u
37
+ ··· 24u 19)
c
10
(u
10
+ 2u
9
u
8
3u
7
u
5
2u
4
+ 2u
3
+ 2u
2
+ 1)
· (u
38
3u
37
+ ··· + 94u 11)
c
11
(u
10
3u
9
+ u
8
+ 5u
7
7u
6
+ 3u
5
+ 4u
4
7u
3
+ 6u
2
3u + 1)
· (u
38
2u
37
+ ··· + 31u + 1)
13
IV. Riley Polynomials
Crossings Riley Polynomials at each crossing
c
1
, c
5
(y
10
+ 7y
9
+ ··· + 7y + 1)(y
38
+ 20y
37
+ ··· 7y + 1)
c
2
(y
10
y
9
+ ··· 5y + 1)(y
38
+ 4y
37
+ ··· 95y + 1)
c
3
(y
10
+ 4y
9
+ ··· + 12y + 1)(y
38
+ 41y
37
+ ··· + 1138y + 841)
c
4
, c
8
, c
9
(y
10
12y
9
+ ··· + 4y + 1)(y
38
35y
37
+ ··· 6y + 361)
c
6
, c
10
(y
10
6y
9
+ 13y
8
9y
7
6y
6
+ 9y
5
+ 6y
4
12y
3
+ 4y + 1)
· (y
38
17y
37
+ ··· 1686y + 121)
c
7
(y
10
+ 4y
9
12y
7
+ 6y
6
+ 9y
5
6y
4
9y
3
+ 13y
2
6y + 1)
· (y
38
+ 37y
37
+ ··· 325y + 4)
c
11
(y
10
7y
9
+ 17y
8
13y
7
3y
6
+ y
5
+ 6y
4
+ 3y
3
+ 2y
2
+ 3y + 1)
· (y
38
38y
37
+ ··· 415y + 1)
14