11n
110
(K11n
110
)
A knot diagram
1
Linearized knot diagam
7 1 11 9 10 2 10 3 5 8 9
Solving Sequence
7,10 2,8
1 3 6 5 9 11 4
c
7
c
1
c
2
c
6
c
5
c
9
c
11
c
3
c
4
, c
8
, c
10
Ideals for irreducible components
2
of X
par
I
u
1
= h−5.24577 × 10
42
u
29
3.23671 × 10
42
u
28
+ ··· + 1.72502 × 10
43
b + 9.64831 × 10
44
,
1.04908 × 10
45
u
29
2.98068 × 10
44
u
28
+ ··· + 2.46678 × 10
45
a + 3.12089 × 10
47
,
u
30
20u
28
+ ··· 702u + 143i
I
u
2
= h2u
9
+ u
8
8u
7
3u
6
+ 12u
5
+ 4u
4
5u
3
4u
2
+ b + 2u + 1,
u
9
+ u
8
3u
7
3u
6
+ 2u
5
+ 3u
4
+ 4u
3
+ a 3u 1,
u
10
+ u
9
4u
8
4u
7
+ 6u
6
+ 7u
5
2u
4
6u
3
u
2
+ 2u + 1i
* 2 irreducible components of dim
C
= 0, with total 40 representations.
1
The image of knot diagram is generated by the software Draw programme developed by An-
drew Bartholomew(http://www.layer8.co.uk/maths/draw/index.htm#Running-draw), where we modi-
fied some parts for our purpose(https://github.com/CATsTAILs/LinksPainter).
2
All coefficients of polynomials are rational numbers. But the coefficients are sometimes approximated
in decimal forms when there is not enough margin.
1
I. I
u
1
= h−5.25 × 10
42
u
29
3.24 × 10
42
u
28
+ · · · + 1.73 × 10
43
b + 9.65 ×
10
44
, 1.05 × 10
45
u
29
2.98 × 10
44
u
28
+ · · · + 2.47 × 10
45
a + 3.12 ×
10
47
, u
30
20u
28
+ · · · 702u + 143i
(i) Arc colorings
a
7
=
1
0
a
10
=
0
u
a
2
=
0.425284u
29
+ 0.120833u
28
+ ··· + 435.751u 126.517
0.304099u
29
+ 0.187633u
28
+ ··· + 228.271u 55.9316
a
8
=
1
u
2
a
1
=
0.121185u
29
0.0668003u
28
+ ··· + 207.480u 70.5855
0.304099u
29
+ 0.187633u
28
+ ··· + 228.271u 55.9316
a
3
=
0.106102u
29
0.0778641u
28
+ ··· + 210.361u 79.9957
0.135922u
29
+ 0.0365756u
28
+ ··· + 136.153u 36.2204
a
6
=
0.232141u
29
0.191193u
28
+ ··· 134.653u + 22.1188
0.164756u
29
0.170846u
28
+ ··· 70.5588u + 6.95079
a
5
=
0.232141u
29
0.191193u
28
+ ··· 134.653u + 22.1188
0.0393575u
29
0.0958610u
28
+ ··· + 30.4623u 20.3898
a
9
=
0.218809u
29
+ 0.241071u
28
+ ··· + 63.2104u + 9.67970
0.0214735u
29
+ 0.132358u
28
+ ··· 126.031u + 47.6240
a
11
=
u
u
3
+ u
a
4
=
0.186030u
29
0.0243156u
28
+ ··· + 264.074u 88.9655
0.190051u
29
+ 0.0781916u
28
+ ··· + 163.704u 37.5328
a
4
=
0.186030u
29
0.0243156u
28
+ ··· + 264.074u 88.9655
0.190051u
29
+ 0.0781916u
28
+ ··· + 163.704u 37.5328
(ii) Obstruction class = 1
(iii) Cusp Shapes = 1.06625u
29
0.645061u
28
+ ··· 715.257u + 115.725
2
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
6
u
30
+ 3u
28
+ ··· + 6u + 1
c
2
u
30
+ 6u
29
+ ··· + 4u + 1
c
3
u
30
+ u
29
+ ··· 5u + 1
c
4
, c
5
, c
9
u
30
+ u
27
+ ··· 4u + 19
c
7
, c
10
u
30
20u
28
+ ··· + 702u + 143
c
8
u
30
+ u
29
+ ··· u + 3
c
11
u
30
4u
29
+ ··· 14u + 1
3
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
6
y
30
+ 6y
29
+ ··· + 4y + 1
c
2
y
30
+ 42y
29
+ ··· + 124y + 1
c
3
y
30
27y
29
+ ··· + 89y + 1
c
4
, c
5
, c
9
y
30
+ 30y
28
+ ··· + 5798y + 361
c
7
, c
10
y
30
40y
29
+ ··· 169052y + 20449
c
8
y
30
+ y
29
+ ··· + 149y + 9
c
11
y
30
+ 30y
29
+ ··· 30y + 1
4
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.451767 + 0.791950I
a = 0.695737 + 0.012247I
b = 0.129301 + 0.865185I
0.95851 2.62649I 5.25510 + 4.40076I
u = 0.451767 0.791950I
a = 0.695737 0.012247I
b = 0.129301 0.865185I
0.95851 + 2.62649I 5.25510 4.40076I
u = 0.898711 + 0.095581I
a = 0.211923 + 1.074670I
b = 0.472373 + 1.278930I
0.32537 4.54381I 1.91240 + 4.46685I
u = 0.898711 0.095581I
a = 0.211923 1.074670I
b = 0.472373 1.278930I
0.32537 + 4.54381I 1.91240 4.46685I
u = 0.796766 + 0.348460I
a = 1.49520 + 0.87151I
b = 0.307391 0.308073I
1.43336 3.12326I 2.11949 + 6.95210I
u = 0.796766 0.348460I
a = 1.49520 0.87151I
b = 0.307391 + 0.308073I
1.43336 + 3.12326I 2.11949 6.95210I
u = 1.162640 + 0.268770I
a = 0.570691 0.011630I
b = 0.324375 0.250772I
2.62675 0.08468I 4.72619 2.64005I
u = 1.162640 0.268770I
a = 0.570691 + 0.011630I
b = 0.324375 + 0.250772I
2.62675 + 0.08468I 4.72619 + 2.64005I
u = 0.971060 + 0.777102I
a = 0.21574 + 1.45380I
b = 0.344838 + 0.890194I
1.65136 1.24421I 1.024611 0.505616I
u = 0.971060 0.777102I
a = 0.21574 1.45380I
b = 0.344838 0.890194I
1.65136 + 1.24421I 1.024611 + 0.505616I
5
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.484306 + 0.368077I
a = 0.08679 1.82883I
b = 0.943336 0.363298I
3.55287 + 0.89069I 4.27167 0.33793I
u = 0.484306 0.368077I
a = 0.08679 + 1.82883I
b = 0.943336 + 0.363298I
3.55287 0.89069I 4.27167 + 0.33793I
u = 0.497783 + 0.340691I
a = 0.06739 + 2.71662I
b = 0.425755 + 1.001110I
4.76031 + 3.13588I 9.92249 3.96046I
u = 0.497783 0.340691I
a = 0.06739 2.71662I
b = 0.425755 1.001110I
4.76031 3.13588I 9.92249 + 3.96046I
u = 1.386090 + 0.220291I
a = 0.285192 0.809687I
b = 1.08600 0.98826I
5.14615 + 3.90437I 9.12338 9.65977I
u = 1.386090 0.220291I
a = 0.285192 + 0.809687I
b = 1.08600 + 0.98826I
5.14615 3.90437I 9.12338 + 9.65977I
u = 0.279478 + 0.517536I
a = 0.529791 + 0.994280I
b = 0.332645 + 0.600289I
0.104103 1.239120I 1.20094 + 5.47066I
u = 0.279478 0.517536I
a = 0.529791 0.994280I
b = 0.332645 0.600289I
0.104103 + 1.239120I 1.20094 5.47066I
u = 0.95950 + 1.37007I
a = 0.040805 0.860607I
b = 0.649057 0.680993I
2.53446 5.24872I 0
u = 0.95950 1.37007I
a = 0.040805 + 0.860607I
b = 0.649057 + 0.680993I
2.53446 + 5.24872I 0
6
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 1.66595 + 0.28622I
a = 0.341727 + 1.280250I
b = 0.911434 + 1.076300I
10.88760 3.99108I 0
u = 1.66595 0.28622I
a = 0.341727 1.280250I
b = 0.911434 1.076300I
10.88760 + 3.99108I 0
u = 1.81937 + 0.16535I
a = 0.066198 0.673030I
b = 1.102130 0.866233I
12.05590 + 5.16332I 0
u = 1.81937 0.16535I
a = 0.066198 + 0.673030I
b = 1.102130 + 0.866233I
12.05590 5.16332I 0
u = 1.84023 + 0.48450I
a = 0.235652 + 1.128640I
b = 0.93280 + 1.10972I
11.2229 + 12.5494I 0
u = 1.84023 0.48450I
a = 0.235652 1.128640I
b = 0.93280 1.10972I
11.2229 12.5494I 0
u = 1.91541 + 0.00143I
a = 0.134628 + 0.585582I
b = 1.030320 + 0.873089I
11.56270 3.12726I 0
u = 1.91541 0.00143I
a = 0.134628 0.585582I
b = 1.030320 0.873089I
11.56270 + 3.12726I 0
u = 1.95273 + 0.27313I
a = 0.258299 0.863821I
b = 0.819056 0.903848I
5.64984 3.06569I 0
u = 1.95273 0.27313I
a = 0.258299 + 0.863821I
b = 0.819056 + 0.903848I
5.64984 + 3.06569I 0
7
II. I
u
2
= h2u
9
+ u
8
+ · · · + b + 1, u
9
+ u
8
+ · · · + a 1, u
10
+ u
9
+ · · · + 2u + 1i
(i) Arc colorings
a
7
=
1
0
a
10
=
0
u
a
2
=
u
9
u
8
+ 3u
7
+ 3u
6
2u
5
3u
4
4u
3
+ 3u + 1
2u
9
u
8
+ 8u
7
+ 3u
6
12u
5
4u
4
+ 5u
3
+ 4u
2
2u 1
a
8
=
1
u
2
a
1
=
u
9
5u
7
+ 10u
5
+ u
4
9u
3
4u
2
+ 5u + 2
2u
9
u
8
+ 8u
7
+ 3u
6
12u
5
4u
4
+ 5u
3
+ 4u
2
2u 1
a
3
=
u
8
4u
6
+ u
5
+ 6u
4
2u
3
3u
2
+ 2
u
9
u
8
+ 4u
7
+ 4u
6
6u
5
6u
4
+ 2u
3
+ 4u
2
+ u 1
a
6
=
2u
9
+ u
8
9u
7
4u
6
+ 15u
5
+ 7u
4
8u
3
7u
2
+ u + 2
u
9
+ 5u
7
10u
5
u
4
+ 8u
3
+ 4u
2
3u 3
a
5
=
2u
9
+ u
8
9u
7
4u
6
+ 15u
5
+ 7u
4
8u
3
7u
2
+ u + 2
u
9
+ 6u
7
+ u
6
13u
5
4u
4
+ 11u
3
+ 7u
2
3u 4
a
9
=
u
9
u
8
+ 4u
7
+ 4u
6
6u
5
7u
4
+ 2u
3
+ 6u
2
+ u 1
u
9
5u
7
+ 10u
5
+ u
4
9u
3
5u
2
+ 4u + 3
a
11
=
u
u
3
+ u
a
4
=
u
9
+ u
8
4u
7
3u
6
+ 7u
5
+ 4u
4
5u
3
3u
2
+ 2u + 2
u
9
2u
8
+ 4u
7
+ 8u
6
6u
5
12u
4
+ 2u
3
+ 7u
2
+ 2u 2
a
4
=
u
9
+ u
8
4u
7
3u
6
+ 7u
5
+ 4u
4
5u
3
3u
2
+ 2u + 2
u
9
2u
8
+ 4u
7
+ 8u
6
6u
5
12u
4
+ 2u
3
+ 7u
2
+ 2u 2
(ii) Obstruction class = 1
(iii) Cusp Shapes = 5u
9
2u
8
24u
7
+ 8u
6
+ 45u
5
5u
4
34u
3
16u
2
+ 18u + 6
8
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
u
10
+ u
9
+ 3u
8
+ 2u
7
+ 5u
6
+ 2u
5
+ 5u
4
+ 3u
2
+ 1
c
2
u
10
+ 5u
9
+ ··· + 6u + 1
c
3
u
10
2u
8
+ 2u
7
+ u
6
5u
5
+ 4u
4
+ 4u
3
4u
2
u + 1
c
4
, c
5
u
10
u
9
4u
8
+ 4u
7
+ 4u
6
5u
5
+ u
4
+ 2u
3
2u
2
+ 1
c
6
u
10
u
9
+ 3u
8
2u
7
+ 5u
6
2u
5
+ 5u
4
+ 3u
2
+ 1
c
7
u
10
+ u
9
4u
8
4u
7
+ 6u
6
+ 7u
5
2u
4
6u
3
u
2
+ 2u + 1
c
8
u
10
2u
8
u
7
+ 2u
4
+ 5u
3
+ 4u
2
+ u + 1
c
9
u
10
+ u
9
4u
8
4u
7
+ 4u
6
+ 5u
5
+ u
4
2u
3
2u
2
+ 1
c
10
u
10
u
9
4u
8
+ 4u
7
+ 6u
6
7u
5
2u
4
+ 6u
3
u
2
2u + 1
c
11
u
10
+ u
9
+ 3u
8
+ u
6
2u
5
+ 3u
4
+ u
3
+ 2u
2
+ 1
9
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
6
y
10
+ 5y
9
+ ··· + 6y + 1
c
2
y
10
+ 5y
9
+ ··· + 2y + 1
c
3
y
10
4y
9
+ 6y
8
3y
6
15y
5
+ 48y
4
56y
3
+ 32y
2
9y + 1
c
4
, c
5
, c
9
y
10
9y
9
+ 32y
8
56y
7
+ 48y
6
15y
5
3y
4
+ 6y
2
4y + 1
c
7
, c
10
y
10
9y
9
+ ··· 6y + 1
c
8
y
10
4y
9
+ 4y
8
+ 3y
7
4y
5
+ 2y
4
9y
3
+ 10y
2
+ 7y + 1
c
11
y
10
+ 5y
9
+ ··· + 4y + 1
10
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
2
1(vol +
1CS) Cusp shape
u = 0.849647 + 0.261463I
a = 0.63621 2.08969I
b = 0.485410 1.047400I
3.86861 + 3.23765I 0.07935 4.10700I
u = 0.849647 0.261463I
a = 0.63621 + 2.08969I
b = 0.485410 + 1.047400I
3.86861 3.23765I 0.07935 + 4.10700I
u = 0.533163 + 0.595129I
a = 1.81845 + 1.33892I
b = 0.188177 + 0.714180I
0.81616 2.31326I 2.65364 + 2.24652I
u = 0.533163 0.595129I
a = 1.81845 1.33892I
b = 0.188177 0.714180I
0.81616 + 2.31326I 2.65364 2.24652I
u = 0.604487 + 0.305956I
a = 0.676843 0.030545I
b = 0.350077 1.119590I
0.92810 4.66670I 4.84081 + 6.38694I
u = 0.604487 0.305956I
a = 0.676843 + 0.030545I
b = 0.350077 + 1.119590I
0.92810 + 4.66670I 4.84081 6.38694I
u = 1.289770 + 0.393534I
a = 0.321650 + 0.084596I
b = 0.487215 + 0.608032I
2.37349 0.80372I 1.70130 + 5.71756I
u = 1.289770 0.393534I
a = 0.321650 0.084596I
b = 0.487215 0.608032I
2.37349 + 0.80372I 1.70130 5.71756I
u = 1.50177 + 0.34547I
a = 0.319261 0.841088I
b = 0.934371 0.879616I
4.70910 3.41496I 0.88361 + 1.66102I
u = 1.50177 0.34547I
a = 0.319261 + 0.841088I
b = 0.934371 + 0.879616I
4.70910 + 3.41496I 0.88361 1.66102I
11
III. u-Polynomials
Crossings u-Polynomials at each crossing
c
1
(u
10
+ u
9
+ 3u
8
+ 2u
7
+ 5u
6
+ 2u
5
+ 5u
4
+ 3u
2
+ 1)
· (u
30
+ 3u
28
+ ··· + 6u + 1)
c
2
(u
10
+ 5u
9
+ ··· + 6u + 1)(u
30
+ 6u
29
+ ··· + 4u + 1)
c
3
(u
10
2u
8
+ 2u
7
+ u
6
5u
5
+ 4u
4
+ 4u
3
4u
2
u + 1)
· (u
30
+ u
29
+ ··· 5u + 1)
c
4
, c
5
(u
10
u
9
4u
8
+ 4u
7
+ 4u
6
5u
5
+ u
4
+ 2u
3
2u
2
+ 1)
· (u
30
+ u
27
+ ··· 4u + 19)
c
6
(u
10
u
9
+ 3u
8
2u
7
+ 5u
6
2u
5
+ 5u
4
+ 3u
2
+ 1)
· (u
30
+ 3u
28
+ ··· + 6u + 1)
c
7
(u
10
+ u
9
4u
8
4u
7
+ 6u
6
+ 7u
5
2u
4
6u
3
u
2
+ 2u + 1)
· (u
30
20u
28
+ ··· + 702u + 143)
c
8
(u
10
2u
8
+ ··· + u + 1)(u
30
+ u
29
+ ··· u + 3)
c
9
(u
10
+ u
9
4u
8
4u
7
+ 4u
6
+ 5u
5
+ u
4
2u
3
2u
2
+ 1)
· (u
30
+ u
27
+ ··· 4u + 19)
c
10
(u
10
u
9
4u
8
+ 4u
7
+ 6u
6
7u
5
2u
4
+ 6u
3
u
2
2u + 1)
· (u
30
20u
28
+ ··· + 702u + 143)
c
11
(u
10
+ u
9
+ 3u
8
+ u
6
2u
5
+ 3u
4
+ u
3
+ 2u
2
+ 1)
· (u
30
4u
29
+ ··· 14u + 1)
12
IV. Riley Polynomials
Crossings Riley Polynomials at each crossing
c
1
, c
6
(y
10
+ 5y
9
+ ··· + 6y + 1)(y
30
+ 6y
29
+ ··· + 4y + 1)
c
2
(y
10
+ 5y
9
+ ··· + 2y + 1)(y
30
+ 42y
29
+ ··· + 124y + 1)
c
3
(y
10
4y
9
+ 6y
8
3y
6
15y
5
+ 48y
4
56y
3
+ 32y
2
9y + 1)
· (y
30
27y
29
+ ··· + 89y + 1)
c
4
, c
5
, c
9
(y
10
9y
9
+ 32y
8
56y
7
+ 48y
6
15y
5
3y
4
+ 6y
2
4y + 1)
· (y
30
+ 30y
28
+ ··· + 5798y + 361)
c
7
, c
10
(y
10
9y
9
+ ··· 6y + 1)(y
30
40y
29
+ ··· 169052y + 20449)
c
8
(y
10
4y
9
+ 4y
8
+ 3y
7
4y
5
+ 2y
4
9y
3
+ 10y
2
+ 7y + 1)
· (y
30
+ y
29
+ ··· + 149y + 9)
c
11
(y
10
+ 5y
9
+ ··· + 4y + 1)(y
30
+ 30y
29
+ ··· 30y + 1)
13