11n
111
(K11n
111
)
A knot diagram
1
Linearized knot diagam
7 1 8 9 10 2 11 1 5 7 4
Solving Sequence
1,8 4,9
5 3 2 11 7 6 10
c
8
c
4
c
3
c
2
c
11
c
7
c
6
c
10
c
1
, c
5
, c
9
Ideals for irreducible components
2
of X
par
I
u
1
= h−249708u
9
1442317u
8
+ ··· + 48083962b 1389936,
2808285u
9
11413026u
8
+ ··· + 625091506a 1233253,
u
10
+ u
9
3u
8
11u
7
+ 23u
6
+ 10u
5
40u
4
+ 43u
3
+ 8u 13i
I
u
2
= h−9u
6
+ 10u
5
29u
4
13u
3
+ 37u
2
+ 41b 95u + 37,
7u
6
+ 26u
5
18u
4
+ 40u
3
+ 88u
2
+ 41a 124u + 129, u
7
+ 3u
5
+ 3u
4
2u
3
+ 7u
2
2u + 1i
* 2 irreducible components of dim
C
= 0, with total 17 representations.
1
The image of knot diagram is generated by the software Draw programme developed by An-
drew Bartholomew(http://www.layer8.co.uk/maths/draw/index.htm#Running-draw), where we modi-
fied some parts for our purpose(https://github.com/CATsTAILs/LinksPainter).
2
All coefficients of polynomials are rational numbers. But the coefficients are sometimes approximated
in decimal forms when there is not enough margin.
1
I. I
u
1
= h−2.50 × 10
5
u
9
1.44 × 10
6
u
8
+ · · · + 4.81 × 10
7
b 1.39 × 10
6
, 2.81 ×
10
6
u
9
1.14 × 10
7
u
8
+ · · · + 6.25 × 10
8
a 1.23 × 10
6
, u
10
+ u
9
+ · · · + 8u 13i
(i) Arc colorings
a
1
=
0
u
a
8
=
1
0
a
4
=
0.00449260u
9
+ 0.0182582u
8
+ ··· + 1.32084u + 0.00197292
0.00519317u
9
+ 0.0299958u
8
+ ··· + 0.743464u + 0.0289064
a
9
=
1
u
2
a
5
=
0.0220573u
9
0.0351316u
8
+ ··· + 0.817782u 0.322693
0.0438996u
9
+ 0.0820347u
8
+ ··· + 0.685204u + 0.494633
a
3
=
0.00968576u
9
0.0117376u
8
+ ··· + 0.577372u 0.0269335
0.00519317u
9
+ 0.0299958u
8
+ ··· + 0.743464u + 0.0289064
a
2
=
0.00968576u
9
0.0117376u
8
+ ··· + 0.577372u 0.0269335
0.0214765u
9
+ 0.0741603u
8
+ ··· + 0.852964u + 0.0555807
a
11
=
0.0198337u
9
+ 0.0277149u
8
+ ··· 0.545921u + 0.561441
0.0210232u
9
+ 0.0419173u
8
+ ··· + 0.718255u + 0.381521
a
7
=
0.00222357u
9
+ 0.00741674u
8
+ ··· 0.271861u + 0.761252
0.0347357u
9
0.0812062u
8
+ ··· 0.339580u 0.451264
a
6
=
0.0336232u
9
+ 0.0761229u
8
+ ··· 0.224398u + 0.840205
0.0855628u
9
0.203256u
8
+ ··· 0.398771u 1.06216
a
10
=
0.0238374u
9
+ 0.0435082u
8
+ ··· 0.0666326u + 0.770268
0.00441748u
9
+ 0.00115972u
8
+ ··· + 0.414900u + 0.184888
a
10
=
0.0238374u
9
+ 0.0435082u
8
+ ··· 0.0666326u + 0.770268
0.00441748u
9
+ 0.00115972u
8
+ ··· + 0.414900u + 0.184888
(ii) Obstruction class = 1
(iii) Cusp Shapes =
5126407
48083962
u
9
1515297
48083962
u
8
+ ··· +
151141541
48083962
u
241733105
48083962
2
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
3
, c
6
u
10
6u
8
4u
7
+ 31u
6
3u
5
+ 19u
4
2u
3
+ u
2
+ u 1
c
2
u
10
12u
9
+ ··· 3u + 1
c
4
, c
5
, c
9
u
10
9u
9
+ 36u
8
79u
7
+ 93u
6
36u
5
40u
4
+ 45u
3
8u
2
+ 4u 8
c
7
, c
10
u
10
+ 3u
9
+ 11u
8
+ u
7
9u
6
84u
5
64u
4
11u
3
16u
2
1
c
8
u
10
u
9
3u
8
+ 11u
7
+ 23u
6
10u
5
40u
4
43u
3
8u 13
c
11
u
10
2u
9
+ u
8
+ 2u
7
+ u
6
7u
5
+ 7u
4
u
2
2u + 1
3
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
3
, c
6
y
10
12y
9
+ ··· 3y + 1
c
2
y
10
+ 52y
9
+ ··· 75y + 1
c
4
, c
5
, c
9
y
10
9y
9
+ ··· + 112y + 64
c
7
, c
10
y
10
+ 13y
9
+ ··· + 32y + 1
c
8
y
10
7y
9
+ ··· 64y + 169
c
11
y
10
2y
9
+ ··· 6y + 1
4
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.661040 + 0.972526I
a = 0.046863 + 1.141840I
b = 0.139003 + 0.708370I
5.08678 + 3.48759I 7.45675 0.73295I
u = 0.661040 0.972526I
a = 0.046863 1.141840I
b = 0.139003 0.708370I
5.08678 3.48759I 7.45675 + 0.73295I
u = 0.672063
a = 0.745125
b = 0.447351
1.57143 5.48950
u = 0.334564 + 0.528443I
a = 0.220981 + 1.025590I
b = 0.178308 + 0.529060I
0.164338 1.117660I 2.63384 + 5.74501I
u = 0.334564 0.528443I
a = 0.220981 1.025590I
b = 0.178308 0.529060I
0.164338 + 1.117660I 2.63384 5.74501I
u = 1.57545
a = 0.500640
b = 0.399391
10.0735 16.9190
u = 1.61793 + 0.67025I
a = 0.679052 + 0.329399I
b = 2.13328 0.91289I
7.01395 + 1.69275I 4.50434 0.09697I
u = 1.61793 0.67025I
a = 0.679052 0.329399I
b = 2.13328 + 0.91289I
7.01395 1.69275I 4.50434 + 0.09697I
u = 1.99271 + 1.85205I
a = 0.050253 0.499314I
b = 2.14860 1.33539I
6.52702 8.61249I 5.20069 + 4.18606I
u = 1.99271 1.85205I
a = 0.050253 + 0.499314I
b = 2.14860 + 1.33539I
6.52702 + 8.61249I 5.20069 4.18606I
5
II. I
u
2
= h−9u
6
+ 10u
5
+ · · · + 41b + 37, 7u
6
+ 26u
5
+ · · · + 41a + 129, u
7
+
3u
5
+ 3u
4
2u
3
+ 7u
2
2u + 1i
(i) Arc colorings
a
1
=
0
u
a
8
=
1
0
a
4
=
0.170732u
6
0.634146u
5
+ ··· + 3.02439u 3.14634
0.219512u
6
0.243902u
5
+ ··· + 2.31707u 0.902439
a
9
=
1
u
2
a
5
=
0.0243902u
6
0.804878u
5
+ ··· + 2.14634u 2.87805
0.585366u
6
0.317073u
5
+ ··· + 2.51220u 1.07317
a
3
=
0.0487805u
6
0.390244u
5
+ ··· + 0.707317u 2.24390
0.219512u
6
0.243902u
5
+ ··· + 2.31707u 0.902439
a
2
=
0.0487805u
6
0.390244u
5
+ ··· + 0.707317u 2.24390
0.341463u
6
0.268293u
5
+ ··· + 3.04878u 1.29268
a
11
=
0.878049u
6
+ 1.02439u
5
+ ··· + 3.26829u + 2.39024
0.0487805u
6
+ 0.390244u
5
+ ··· + 0.292683u + 1.24390
a
7
=
0.902439u
6
0.219512u
5
+ ··· 5.41463u 0.512195
0.390244u
6
0.121951u
5
+ ··· 1.34146u 0.951220
a
6
=
0.0487805u
6
0.390244u
5
+ ··· 0.292683u 2.24390
0.365854u
6
0.0731707u
5
+ ··· + 2.19512u 1.17073
a
10
=
0.170732u
6
+ 0.634146u
5
+ ··· 3.02439u + 2.14634
0.121951u
6
+ 0.0243902u
5
+ ··· 1.73171u + 0.390244
a
10
=
0.170732u
6
+ 0.634146u
5
+ ··· 3.02439u + 2.14634
0.121951u
6
+ 0.0243902u
5
+ ··· 1.73171u + 0.390244
(ii) Obstruction class = 1
(iii) Cusp Shapes =
167
41
u
6
+
106
41
u
5
+
488
41
u
4
+
715
41
u
3
108
41
u
2
+
551
41
u
190
41
6
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
u
7
u
6
+ 3u
5
2u
4
+ 2u
3
2u
2
+ u 1
c
2
u
7
+ 5u
6
+ 9u
5
+ 6u
4
4u
2
3u 1
c
3
, c
6
u
7
+ u
6
+ 3u
5
+ 2u
4
+ 2u
3
+ 2u
2
+ u + 1
c
4
, c
5
u
7
+ u
6
4u
5
3u
4
+ 5u
3
+ 2u
2
2u + 1
c
7
u
7
+ 2u
6
u
5
3u
4
2u
3
+ u
2
+ 2u + 1
c
8
u
7
+ 3u
5
+ 3u
4
2u
3
+ 7u
2
2u + 1
c
9
u
7
u
6
4u
5
+ 3u
4
+ 5u
3
2u
2
2u 1
c
10
u
7
2u
6
u
5
+ 3u
4
2u
3
u
2
+ 2u 1
c
11
u
7
3u
6
+ 4u
5
u
4
u
3
+ 2u 1
7
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
3
, c
6
y
7
+ 5y
6
+ 9y
5
+ 6y
4
4y
2
3y 1
c
2
y
7
7y
6
+ 21y
5
2y
4
+ 4y
3
4y
2
+ y 1
c
4
, c
5
, c
9
y
7
9y
6
+ 32y
5
57y
4
+ 51y
3
18y
2
1
c
7
, c
10
y
7
6y
6
+ 9y
5
5y
4
+ 2y
3
3y
2
+ 2y 1
c
8
y
7
+ 6y
6
+ 5y
5
25y
4
50y
3
47y
2
10y 1
c
11
y
7
y
6
+ 8y
5
5y
4
+ 11y
3
6y
2
+ 4y 1
8
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
2
1(vol +
1CS) Cusp shape
u = 0.467003 + 0.976251I
a = 0.42070 + 1.39171I
b = 0.275124 + 0.778615I
5.39479 + 4.17967I 12.5166 9.7446I
u = 0.467003 0.976251I
a = 0.42070 1.39171I
b = 0.275124 0.778615I
5.39479 4.17967I 12.5166 + 9.7446I
u = 1.52187
a = 0.371752
b = 0.876095
9.60369 0.690320
u = 0.148823 + 0.381778I
a = 2.37616 + 0.93067I
b = 0.466038 + 0.754209I
1.83703 2.44043I 3.31727 + 3.97577I
u = 0.148823 0.381778I
a = 2.37616 0.93067I
b = 0.466038 0.754209I
1.83703 + 2.44043I 3.31727 3.97577I
u = 0.14511 + 1.82223I
a = 0.230411 0.377251I
b = 0.25287 1.43719I
7.70554 + 1.74618I 7.51126 3.54450I
u = 0.14511 1.82223I
a = 0.230411 + 0.377251I
b = 0.25287 + 1.43719I
7.70554 1.74618I 7.51126 + 3.54450I
9
III. u-Polynomials
Crossings u-Polynomials at each crossing
c
1
(u
7
u
6
+ 3u
5
2u
4
+ 2u
3
2u
2
+ u 1)
· (u
10
6u
8
4u
7
+ 31u
6
3u
5
+ 19u
4
2u
3
+ u
2
+ u 1)
c
2
(u
7
+ 5u
6
+ ··· 3u 1)(u
10
12u
9
+ ··· 3u + 1)
c
3
, c
6
(u
7
+ u
6
+ 3u
5
+ 2u
4
+ 2u
3
+ 2u
2
+ u + 1)
· (u
10
6u
8
4u
7
+ 31u
6
3u
5
+ 19u
4
2u
3
+ u
2
+ u 1)
c
4
, c
5
(u
7
+ u
6
4u
5
3u
4
+ 5u
3
+ 2u
2
2u + 1)
· (u
10
9u
9
+ 36u
8
79u
7
+ 93u
6
36u
5
40u
4
+ 45u
3
8u
2
+ 4u 8)
c
7
(u
7
+ 2u
6
u
5
3u
4
2u
3
+ u
2
+ 2u + 1)
· (u
10
+ 3u
9
+ 11u
8
+ u
7
9u
6
84u
5
64u
4
11u
3
16u
2
1)
c
8
(u
7
+ 3u
5
+ 3u
4
2u
3
+ 7u
2
2u + 1)
· (u
10
u
9
3u
8
+ 11u
7
+ 23u
6
10u
5
40u
4
43u
3
8u 13)
c
9
(u
7
u
6
4u
5
+ 3u
4
+ 5u
3
2u
2
2u 1)
· (u
10
9u
9
+ 36u
8
79u
7
+ 93u
6
36u
5
40u
4
+ 45u
3
8u
2
+ 4u 8)
c
10
(u
7
2u
6
u
5
+ 3u
4
2u
3
u
2
+ 2u 1)
· (u
10
+ 3u
9
+ 11u
8
+ u
7
9u
6
84u
5
64u
4
11u
3
16u
2
1)
c
11
(u
7
3u
6
+ 4u
5
u
4
u
3
+ 2u 1)
· (u
10
2u
9
+ u
8
+ 2u
7
+ u
6
7u
5
+ 7u
4
u
2
2u + 1)
10
IV. Riley Polynomials
Crossings Riley Polynomials at each crossing
c
1
, c
3
, c
6
(y
7
+ 5y
6
+ ··· 3y 1)(y
10
12y
9
+ ··· 3y + 1)
c
2
(y
7
7y
6
+ ··· + y 1)(y
10
+ 52y
9
+ ··· 75y + 1)
c
4
, c
5
, c
9
(y
7
9y
6
+ 32y
5
57y
4
+ 51y
3
18y
2
1)
· (y
10
9y
9
+ ··· + 112y + 64)
c
7
, c
10
(y
7
6y
6
+ ··· + 2y 1)(y
10
+ 13y
9
+ ··· + 32y + 1)
c
8
(y
7
+ 6y
6
+ 5y
5
25y
4
50y
3
47y
2
10y 1)
· (y
10
7y
9
+ ··· 64y + 169)
c
11
(y
7
y
6
+ ··· + 4y 1)(y
10
2y
9
+ ··· 6y + 1)
11