11n
116
(K11n
116
)
A knot diagram
1
Linearized knot diagam
7 1 8 10 9 2 10 1 5 8 4
Solving Sequence
3,8 4,10
5 11 1 2 7 6 9
c
3
c
4
c
10
c
11
c
2
c
7
c
6
c
9
c
1
, c
5
, c
8
Ideals for irreducible components
2
of X
par
I
u
1
= h8u
7
+ 2u
6
+ 43u
5
42u
4
+ 38u
3
164u
2
+ 17b + 20u 27,
28u
7
+ 58u
6
+ 244u
5
+ 278u
4
+ 490u
3
+ 191u
2
+ 17a + 53u + 33,
u
8
+ 2u
7
+ 9u
6
+ 10u
5
+ 20u
4
+ 8u
3
+ 7u
2
+ u + 1i
I
u
2
= h56u
7
6u
6
+ 421u
5
+ 108u
4
+ 1168u
3
+ 208u
2
+ 397b + 934u + 377,
418u
7
+ 300u
6
2788u
5
+ 158u
4
4408u
3
475u
2
+ 1191a 251u 985,
u
8
+ 7u
6
+ 4u
5
+ 16u
4
+ 10u
3
+ 11u
2
+ 7u + 3i
* 2 irreducible components of dim
C
= 0, with total 16 representations.
1
The image of knot diagram is generated by the software Draw programme developed by An-
drew Bartholomew(http://www.layer8.co.uk/maths/draw/index.htm#Running-draw), where we modi-
fied some parts for our purpose(https://github.com/CATsTAILs/LinksPainter).
2
All coefficients of polynomials are rational numbers. But the coefficients are sometimes approximated
in decimal forms when there is not enough margin.
1
I.
I
u
1
= h8u
7
+2u
6
+· · ·+17b27, 28u
7
+58u
6
+· · ·+17a+33, u
8
+2u
7
+· · ·+u+1i
(i) Arc colorings
a
3
=
1
0
a
8
=
0
u
a
4
=
1
u
2
a
10
=
1.64706u
7
3.41176u
6
+ ··· 3.11765u 1.94118
0.470588u
7
0.117647u
6
+ ··· 1.17647u + 1.58824
a
5
=
1.35294u
7
+ 0.588235u
6
+ ··· + 6.88235u 2.94118
2.70588u
7
5.17647u
6
+ ··· 6.76471u 3.11765
a
11
=
1.64706u
7
3.41176u
6
+ ··· 3.11765u 1.94118
1.17647u
7
1.29412u
6
+ ··· 2.94118u + 1.47059
a
1
=
1.17647u
7
3.29412u
6
+ ··· 1.94118u 3.52941
1.11765u
7
1.52941u
6
+ ··· 3.29412u + 0.647059
a
2
=
7.58824u
7
14.6471u
6
+ ··· 17.4706u 8.76471
0.176471u
7
+ 2.29412u
6
+ ··· 5.05882u + 8.52941
a
7
=
1.64706u
7
1.41176u
6
+ ··· 7.11765u + 3.05882
2.41176u
7
+ 4.35294u
6
+ ··· + 6.52941u + 3.23529
a
6
=
3.64706u
7
12.4118u
6
+ ··· 1.11765u 20.9412
6.70588u
7
9.17647u
6
+ ··· 21.7647u + 2.88235
a
9
=
6.52941u
7
+ 11.8824u
6
+ ··· + 15.8235u + 6.58824
0.529412u
7
2.88235u
6
+ ··· + 3.17647u 7.58824
a
9
=
6.52941u
7
+ 11.8824u
6
+ ··· + 15.8235u + 6.58824
0.529412u
7
2.88235u
6
+ ··· + 3.17647u 7.58824
(ii) Obstruction class = 1
(iii) Cusp Shapes =
19
17
u
7
60
17
u
6
219
17
u
5
389
17
u
4
613
17
u
3
571
17
u
2
260
17
u
57
17
2
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
6
u
8
+ 3u
7
+ 12u
6
+ 15u
5
+ 32u
4
+ 9u
3
+ 27u
2
21u + 11
c
2
u
8
+ 15u
7
+ ··· + 153u + 121
c
3
u
8
+ 2u
7
+ 9u
6
+ 10u
5
+ 20u
4
+ 8u
3
+ 7u
2
+ u + 1
c
4
, c
5
, c
9
u
8
+ 8u
6
4u
5
+ 36u
4
29u
3
+ 41u
2
+ 17u + 19
c
7
, c
10
u
8
+ 2u
7
+ 8u
6
+ 3u
5
+ 38u
4
38u
3
+ 58u
2
12u + 7
c
8
u
8
2u
7
+ 10u
6
+ 6u
5
+ 168u
4
+ 139u
3
+ 116u
2
60u + 47
c
11
u
8
4u
7
+ 13u
6
28u
5
+ 90u
4
+ 60u
3
+ 85u
2
+ 23u + 11
3
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
6
y
8
+ 15y
7
+ ··· + 153y + 121
c
2
y
8
+ 11y
7
+ ··· + 414853y + 14641
c
3
y
8
+ 14y
7
+ 81y
6
+ 242y
5
+ 364y
4
+ 214y
3
+ 73y
2
+ 13y + 1
c
4
, c
5
, c
9
y
8
+ 16y
7
+ ··· + 1269y + 361
c
7
, c
10
y
8
+ 12y
7
+ ··· + 668y + 49
c
8
y
8
+ 16y
7
+ ··· + 7304y + 2209
c
11
y
8
+ 10y
7
+ ··· + 1341y + 121
4
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.270939 + 0.522049I
a = 3.45142 + 1.23452I
b = 0.44567 2.88321I
4.85825 1.12061I 1.61393 + 0.60117I
u = 0.270939 0.522049I
a = 3.45142 1.23452I
b = 0.44567 + 2.88321I
4.85825 + 1.12061I 1.61393 0.60117I
u = 0.104875 + 0.438980I
a = 0.849602 + 0.031731I
b = 0.136204 + 0.426385I
0.137633 + 1.005540I 2.51610 6.63610I
u = 0.104875 0.438980I
a = 0.849602 0.031731I
b = 0.136204 0.426385I
0.137633 1.005540I 2.51610 + 6.63610I
u = 0.66203 + 1.74906I
a = 0.565751 0.130138I
b = 0.274053 0.658590I
5.40704 2.79901I 1.66145 + 4.10976I
u = 0.66203 1.74906I
a = 0.565751 + 0.130138I
b = 0.274053 + 0.658590I
5.40704 + 2.79901I 1.66145 4.10976I
u = 0.17191 + 2.00694I
a = 1.16757 + 0.88058I
b = 2.85593 + 2.12606I
19.3281 7.7545I 1.70851 + 2.41364I
u = 0.17191 2.00694I
a = 1.16757 0.88058I
b = 2.85593 2.12606I
19.3281 + 7.7545I 1.70851 2.41364I
5
II. I
u
2
= h56u
7
6u
6
+ · · · + 397b + 377, 418u
7
+ 300u
6
+ · · · + 1191a
985, u
8
+ 7u
6
+ 4u
5
+ 16u
4
+ 10u
3
+ 11u
2
+ 7u + 3i
(i) Arc colorings
a
3
=
1
0
a
8
=
0
u
a
4
=
1
u
2
a
10
=
0.350966u
7
0.251889u
6
+ ··· + 0.210747u + 0.827036
0.141058u
7
+ 0.0151134u
6
+ ··· 2.35264u 0.949622
a
5
=
0.316541u
7
+ 0.141058u
6
+ ··· 2.95802u + 1.13686
0.251889u
7
0.115869u
6
+ ··· 1.62972u 2.05290
a
11
=
0.350966u
7
0.251889u
6
+ ··· + 0.210747u + 0.827036
0.0251889u
7
0.211587u
6
+ ··· 3.06297u 1.70529
a
1
=
0.492024u
7
0.267003u
6
+ ··· + 2.56339u + 1.77666
0.0982368u
7
0.0251889u
6
+ ··· 2.74559u 1.75063
a
2
=
0.306465u
7
0.425693u
6
+ ··· + 2.93283u + 1.58102
0.365239u
7
0.0680101u
6
+ ··· 4.41310u 1.22670
a
7
=
0.0772460u
7
+ 0.151134u
6
+ ··· + 2.14022u + 1.83711
0.410579u
7
+ 0.151134u
6
+ ··· 0.526448u 0.496222
a
6
=
0.518892u
7
0.158690u
6
+ ··· 3.29723u 2.52897
0.0251889u
7
0.211587u
6
+ ··· 1.06297u + 0.294710
a
9
=
0.590260u
7
+ 0.241814u
6
+ ··· 5.30898u 2.52729
0.425693u
7
0.224181u
6
+ ··· + 2.56423u + 0.919395
a
9
=
0.590260u
7
+ 0.241814u
6
+ ··· 5.30898u 2.52729
0.425693u
7
0.224181u
6
+ ··· + 2.56423u + 0.919395
(ii) Obstruction class = 1
(iii) Cusp Shapes =
543
397
u
7
44
397
u
6
+
3749
397
u
5
+
1983
397
u
4
+
8433
397
u
3
+
5363
397
u
2
+
5526
397
u +
4485
397
6
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
u
8
+ u
7
+ 4u
6
+ 3u
5
+ 6u
4
+ 3u
3
+ 5u
2
+ u + 1
c
2
u
8
+ 7u
7
+ 22u
6
+ 43u
5
+ 58u
4
+ 53u
3
+ 31u
2
+ 9u + 1
c
3
u
8
+ 7u
6
+ 4u
5
+ 16u
4
+ 10u
3
+ 11u
2
+ 7u + 3
c
4
, c
5
u
8
+ 4u
6
+ 6u
4
u
3
+ 5u
2
u + 1
c
6
u
8
u
7
+ 4u
6
3u
5
+ 6u
4
3u
3
+ 5u
2
u + 1
c
7
u
8
+ 2u
7
+ 2u
6
+ u
5
2u
4
2u
3
+ 1
c
8
u
8
2u
5
2u
4
+ u
3
+ 2u
2
+ 2u + 1
c
9
u
8
+ 4u
6
+ 6u
4
+ u
3
+ 5u
2
+ u + 1
c
10
u
8
2u
7
+ 2u
6
u
5
2u
4
+ 2u
3
+ 1
c
11
u
8
2u
7
+ u
6
2u
4
+ 2u
3
+ u
2
u + 1
7
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
6
y
8
+ 7y
7
+ 22y
6
+ 43y
5
+ 58y
4
+ 53y
3
+ 31y
2
+ 9y + 1
c
2
y
8
5y
7
2y
6
+ 23y
5
+ 46y
4
+ 57y
3
+ 123y
2
19y + 1
c
3
y
8
+ 14y
7
+ 81y
6
+ 230y
5
+ 336y
4
+ 238y
3
+ 77y
2
+ 17y + 9
c
4
, c
5
, c
9
y
8
+ 8y
7
+ 28y
6
+ 58y
5
+ 78y
4
+ 67y
3
+ 35y
2
+ 9y + 1
c
7
, c
10
y
8
4y
6
y
5
+ 10y
4
4y
2
+ 1
c
8
y
8
4y
6
+ 10y
4
y
3
4y
2
+ 1
c
11
y
8
2y
7
3y
6
+ 6y
5
+ 4y
4
6y
3
+ y
2
+ y + 1
8
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
2
1(vol +
1CS) Cusp shape
u = 0.186474 + 0.912486I
a = 0.013874 1.371960I
b = 0.307955 0.595773I
2.35558 2.73711I 0.76054 + 3.80045I
u = 0.186474 0.912486I
a = 0.013874 + 1.371960I
b = 0.307955 + 0.595773I
2.35558 + 2.73711I 0.76054 3.80045I
u = 0.456155 + 0.354859I
a = 1.219070 + 0.568101I
b = 0.188647 1.156400I
6.52667 1.60807I 7.81804 + 3.92468I
u = 0.456155 0.354859I
a = 1.219070 0.568101I
b = 0.188647 + 1.156400I
6.52667 + 1.60807I 7.81804 3.92468I
u = 0.26697 + 1.43177I
a = 0.909444 0.062444I
b = 1.377940 + 0.156538I
2.57180 1.45446I 1.40377 + 1.96166I
u = 0.26697 1.43177I
a = 0.909444 + 0.062444I
b = 1.377940 0.156538I
2.57180 + 1.45446I 1.40377 1.96166I
u = 0.53665 + 2.14327I
a = 0.343167 + 0.006141I
b = 0.874540 + 0.277933I
6.31045 + 2.33823I 5.48234 1.59126I
u = 0.53665 2.14327I
a = 0.343167 0.006141I
b = 0.874540 0.277933I
6.31045 2.33823I 5.48234 + 1.59126I
9
III. u-Polynomials
Crossings u-Polynomials at each crossing
c
1
(u
8
+ u
7
+ 4u
6
+ 3u
5
+ 6u
4
+ 3u
3
+ 5u
2
+ u + 1)
· (u
8
+ 3u
7
+ 12u
6
+ 15u
5
+ 32u
4
+ 9u
3
+ 27u
2
21u + 11)
c
2
(u
8
+ 7u
7
+ 22u
6
+ 43u
5
+ 58u
4
+ 53u
3
+ 31u
2
+ 9u + 1)
· (u
8
+ 15u
7
+ ··· + 153u + 121)
c
3
(u
8
+ 7u
6
+ 4u
5
+ 16u
4
+ 10u
3
+ 11u
2
+ 7u + 3)
· (u
8
+ 2u
7
+ 9u
6
+ 10u
5
+ 20u
4
+ 8u
3
+ 7u
2
+ u + 1)
c
4
, c
5
(u
8
+ 4u
6
+ 6u
4
u
3
+ 5u
2
u + 1)
· (u
8
+ 8u
6
4u
5
+ 36u
4
29u
3
+ 41u
2
+ 17u + 19)
c
6
(u
8
u
7
+ 4u
6
3u
5
+ 6u
4
3u
3
+ 5u
2
u + 1)
· (u
8
+ 3u
7
+ 12u
6
+ 15u
5
+ 32u
4
+ 9u
3
+ 27u
2
21u + 11)
c
7
(u
8
+ 2u
7
+ 2u
6
+ u
5
2u
4
2u
3
+ 1)
· (u
8
+ 2u
7
+ 8u
6
+ 3u
5
+ 38u
4
38u
3
+ 58u
2
12u + 7)
c
8
(u
8
2u
5
2u
4
+ u
3
+ 2u
2
+ 2u + 1)
· (u
8
2u
7
+ 10u
6
+ 6u
5
+ 168u
4
+ 139u
3
+ 116u
2
60u + 47)
c
9
(u
8
+ 4u
6
+ 6u
4
+ u
3
+ 5u
2
+ u + 1)
· (u
8
+ 8u
6
4u
5
+ 36u
4
29u
3
+ 41u
2
+ 17u + 19)
c
10
(u
8
2u
7
+ 2u
6
u
5
2u
4
+ 2u
3
+ 1)
· (u
8
+ 2u
7
+ 8u
6
+ 3u
5
+ 38u
4
38u
3
+ 58u
2
12u + 7)
c
11
(u
8
4u
7
+ 13u
6
28u
5
+ 90u
4
+ 60u
3
+ 85u
2
+ 23u + 11)
· (u
8
2u
7
+ u
6
2u
4
+ 2u
3
+ u
2
u + 1)
10
IV. Riley Polynomials
Crossings Riley Polynomials at each crossing
c
1
, c
6
(y
8
+ 7y
7
+ 22y
6
+ 43y
5
+ 58y
4
+ 53y
3
+ 31y
2
+ 9y + 1)
· (y
8
+ 15y
7
+ ··· + 153y + 121)
c
2
(y
8
5y
7
2y
6
+ 23y
5
+ 46y
4
+ 57y
3
+ 123y
2
19y + 1)
· (y
8
+ 11y
7
+ ··· + 414853y + 14641)
c
3
(y
8
+ 14y
7
+ 81y
6
+ 230y
5
+ 336y
4
+ 238y
3
+ 77y
2
+ 17y + 9)
· (y
8
+ 14y
7
+ 81y
6
+ 242y
5
+ 364y
4
+ 214y
3
+ 73y
2
+ 13y + 1)
c
4
, c
5
, c
9
(y
8
+ 8y
7
+ 28y
6
+ 58y
5
+ 78y
4
+ 67y
3
+ 35y
2
+ 9y + 1)
· (y
8
+ 16y
7
+ ··· + 1269y + 361)
c
7
, c
10
(y
8
4y
6
y
5
+ 10y
4
4y
2
+ 1)(y
8
+ 12y
7
+ ··· + 668y + 49)
c
8
(y
8
4y
6
+ 10y
4
y
3
4y
2
+ 1)(y
8
+ 16y
7
+ ··· + 7304y + 2209)
c
11
(y
8
2y
7
3y
6
+ 6y
5
+ 4y
4
6y
3
+ y
2
+ y + 1)
· (y
8
+ 10y
7
+ ··· + 1341y + 121)
11