11n
117
(K11n
117
)
A knot diagram
1
Linearized knot diagam
7 1 8 10 9 2 11 1 5 7 4
Solving Sequence
4,11 1,8
3 2 7 6 10 5 9
c
11
c
3
c
2
c
7
c
6
c
10
c
4
c
9
c
1
, c
5
, c
8
Ideals for irreducible components
2
of X
par
I
u
1
= h7u
12
+ 50u
11
+ ··· + 2b + 42, 7u
12
+ 54u
11
+ ··· + 4a + 52,
u
13
+ 8u
12
+ 33u
11
+ 88u
10
+ 170u
9
+ 251u
8
+ 292u
7
+ 262u
6
+ 172u
5
+ 79u
4
+ 38u
3
+ 31u
2
+ 18u + 4i
I
u
2
= h−3a
3
u
2
+ 2a
3
u + 2a
2
u
2
+ 4a
3
3a
2
u 5u
2
a a
2
+ 3u
2
+ 5b + 10a 7u + 6,
a
4
a
3
u + 3a
2
u
2
5a
2
u + 5a
2
au + 8u
2
+ a 15u + 11, u
3
u
2
+ 1i
I
u
3
= hu
7
2u
6
+ 3u
5
2u
4
2u
3
+ 3u
2
+ b u 1, u
5
2u
4
+ 4u
3
4u
2
+ a + 2u,
u
8
3u
7
+ 6u
6
7u
5
+ 4u
4
+ u
3
2u
2
+ 1i
* 3 irreducible components of dim
C
= 0, with total 33 representations.
1
The image of knot diagram is generated by the software Draw programme developed by An-
drew Bartholomew(http://www.layer8.co.uk/maths/draw/index.htm#Running-draw), where we modi-
fied some parts for our purpose(https://github.com/CATsTAILs/LinksPainter).
2
All coefficients of polynomials are rational numbers. But the coefficients are sometimes approximated
in decimal forms when there is not enough margin.
1
I. I
u
1
=
h7u
12
+50u
11
+· · ·+2b+42, 7u
12
+54u
11
+· · ·+4a+52, u
13
+8u
12
+· · ·+18u+4i
(i) Arc colorings
a
4
=
0
u
a
11
=
1
0
a
1
=
1
u
2
a
8
=
7
4
u
12
27
2
u
11
+ ···
153
4
u 13
7
2
u
12
25u
11
+ ···
121
2
u 21
a
3
=
1
2
u
12
7
2
u
11
+ ···
9
2
u
1
2
1
2
u
12
+ 3u
11
+ ··· + 4u
2
+
3
2
u
a
2
=
1
2
u
11
+ 3u
10
+ ··· + 4u +
3
2
1
2
u
12
3u
11
+ ··· 3u
2
1
2
u
a
7
=
21
4
u
12
77
2
u
11
+ ···
395
4
u 34
7
2
u
12
25u
11
+ ···
121
2
u 21
a
6
=
6u
12
91
2
u
11
+ ··· 113u
75
2
3
2
u
12
17u
11
+ ···
149
2
u 26
a
10
=
3
2
u
12
21
2
u
11
+ ···
35
2
u
9
2
3
2
u
12
11u
11
+ ···
43
2
u 6
a
5
=
21
4
u
12
+
77
2
u
11
+ ··· +
347
4
u + 26
9
2
u
12
+ 35u
11
+ ··· +
181
2
u + 27
a
9
=
21
4
u
12
79
2
u
11
+ ···
387
4
u 32
5
2
u
12
23u
11
+ ···
165
2
u 29
a
9
=
21
4
u
12
79
2
u
11
+ ···
387
4
u 32
5
2
u
12
23u
11
+ ···
165
2
u 29
(ii) Obstruction class = 1
(iii) Cusp Shapes = 11u
12
82u
11
318u
10
792u
9
1428u
8
1957u
7
2100u
6
1675u
5
912u
4
319u
3
215u
2
210u 74
2
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
3
, c
6
u
13
+ 10u
11
+ ··· 2u + 1
c
2
u
13
+ 20u
12
+ ··· + 4u 1
c
4
, c
5
, c
9
u
13
+ 7u
12
+ ··· + 52u + 8
c
7
, c
10
u
13
+ u
12
+ ··· u + 1
c
8
u
13
u
12
+ ··· 25u + 61
c
11
u
13
8u
12
+ ··· + 18u 4
3
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
3
, c
6
y
13
+ 20y
12
+ ··· + 4y 1
c
2
y
13
56y
12
+ ··· + 56y 1
c
4
, c
5
, c
9
y
13
+ 11y
12
+ ··· 176y 64
c
7
, c
10
y
13
15y
12
+ ··· 17y 1
c
8
y
13
+ 31y
12
+ ··· + 4407y 3721
c
11
y
13
+ 2y
12
+ ··· + 76y 16
4
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.679884 + 0.210052I
a = 0.660299 + 0.261424I
b = 1.156160 0.636682I
2.05464 + 3.32300I 2.35472 0.87537I
u = 0.679884 0.210052I
a = 0.660299 0.261424I
b = 1.156160 + 0.636682I
2.05464 3.32300I 2.35472 + 0.87537I
u = 0.134806 + 1.341750I
a = 0.549424 0.347392I
b = 0.196581 + 0.458453I
6.25855 1.58741I 3.86210 + 4.96482I
u = 0.134806 1.341750I
a = 0.549424 + 0.347392I
b = 0.196581 0.458453I
6.25855 + 1.58741I 3.86210 4.96482I
u = 0.594830
a = 0.764918
b = 1.12298
1.85194 5.42920
u = 0.405732 + 0.430962I
a = 0.404293 + 0.808155I
b = 0.019709 0.363243I
0.133748 1.066330I 2.25480 + 6.30909I
u = 0.405732 0.430962I
a = 0.404293 0.808155I
b = 0.019709 + 0.363243I
0.133748 + 1.066330I 2.25480 6.30909I
u = 1.23597 + 1.03056I
a = 0.522817 1.037940I
b = 1.59018 + 0.77503I
10.3151 + 11.3952I 4.67074 5.46785I
u = 1.23597 1.03056I
a = 0.522817 + 1.037940I
b = 1.59018 0.77503I
10.3151 11.3952I 4.67074 + 5.46785I
u = 1.19711 + 1.14120I
a = 0.773854 + 0.862682I
b = 1.62163 0.33100I
14.5236 + 4.3483I 7.04341 2.19507I
5
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 1.19711 1.14120I
a = 0.773854 0.862682I
b = 1.62163 + 0.33100I
14.5236 4.3483I 7.04341 + 2.19507I
u = 1.13016 + 1.29050I
a = 0.868328 0.530434I
b = 1.342400 0.094615I
9.55616 2.72200I 5.53329 + 1.17863I
u = 1.13016 1.29050I
a = 0.868328 + 0.530434I
b = 1.342400 + 0.094615I
9.55616 + 2.72200I 5.53329 1.17863I
6
II.
I
u
2
= h−3a
3
u
2
+ 2a
2
u
2
+ · · · + 10a + 6, 3a
2
u
2
+ 8u
2
+ · · · + a + 11, u
3
u
2
+ 1i
(i) Arc colorings
a
4
=
0
u
a
11
=
1
0
a
1
=
1
u
2
a
8
=
a
3
5
a
3
u
2
2
5
a
2
u
2
+ ··· 2a
6
5
a
3
=
a
2
u
2
5
a
3
u
2
3
5
a
2
u
2
+ ··· a +
6
5
a
2
=
2
5
a
3
u
2
+
2
5
a
2
u
2
+ ··· a +
6
5
a
3
u
2
a
3
+ au + 4u
2
2a 2u
a
7
=
3
5
a
3
u
2
2
5
a
2
u
2
+ ··· a
6
5
3
5
a
3
u
2
2
5
a
2
u
2
+ ··· 2a
6
5
a
6
=
3
5
a
3
u
2
+
2
5
a
2
u
2
+ ··· + a +
6
5
a
3
u
2
+ 2a
3
u + a
3
2a
2
u + 2u
2
a + au + 4u
2
+ 2a 6u + 4
a
10
=
3
5
a
3
u
2
2
5
a
2
u
2
+ ··· a
6
5
2
5
a
3
u
2
+
2
5
a
2
u
2
+ ··· 2a
4
5
a
5
=
3
5
a
3
u
2
2
5
a
2
u
2
+ ··· a
6
5
3
5
a
3
u
2
+
2
5
a
2
u
2
+ ··· 2a
14
5
a
9
=
3
5
a
3
u
2
2
5
a
2
u
2
+ ··· a
6
5
a
3
u a
3
+ a
2
u u
2
a u
2
2a + 2u 2
a
9
=
3
5
a
3
u
2
2
5
a
2
u
2
+ ··· a
6
5
a
3
u a
3
+ a
2
u u
2
a u
2
2a + 2u 2
(ii) Obstruction class = 1
(iii) Cusp Shapes
=
4
5
a
3
u
2
+
16
5
a
3
u
4
5
a
2
u
2
+
12
5
a
3
4
5
a
2
u
8
5
a
2
+ 4au
16
5
u
2
+
44
5
u
42
5
7
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
3
, c
6
u
12
+ u
11
+ ··· 28u + 19
c
2
u
12
+ 15u
11
+ ··· + 1116u + 361
c
4
, c
5
, c
9
(u
2
u + 1)
6
c
7
, c
10
u
12
+ 3u
11
+ ··· + 36u + 7
c
8
u
12
+ u
11
+ ··· + 72u + 61
c
11
(u
3
+ u
2
1)
4
8
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
3
, c
6
y
12
+ 15y
11
+ ··· + 1116y + 361
c
2
y
12
29y
11
+ ··· + 1501032y + 130321
c
4
, c
5
, c
9
(y
2
+ y + 1)
6
c
7
, c
10
y
12
5y
11
+ ··· 708y + 49
c
8
y
12
+ 23y
11
+ ··· 3964y + 3721
c
11
(y
3
y
2
+ 2y 1)
4
9
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
2
1(vol +
1CS) Cusp shape
u = 0.877439 + 0.744862I
a = 0.666043 + 0.768482I
b = 1.68307 0.58734I
1.91067 4.85801I 4.49024 + 6.44355I
u = 0.877439 + 0.744862I
a = 0.417746 1.155940I
b = 1.027310 + 0.598610I
1.91067 4.85801I 4.49024 + 6.44355I
u = 0.877439 + 0.744862I
a = 0.337860 + 1.183260I
b = 0.993753 0.194653I
1.91067 0.79824I 4.49024 0.48465I
u = 0.877439 + 0.744862I
a = 0.544210 0.050945I
b = 1.311880 0.378892I
1.91067 0.79824I 4.49024 0.48465I
u = 0.877439 0.744862I
a = 0.666043 0.768482I
b = 1.68307 + 0.58734I
1.91067 + 4.85801I 4.49024 6.44355I
u = 0.877439 0.744862I
a = 0.417746 + 1.155940I
b = 1.027310 0.598610I
1.91067 + 4.85801I 4.49024 6.44355I
u = 0.877439 0.744862I
a = 0.337860 1.183260I
b = 0.993753 + 0.194653I
1.91067 + 0.79824I 4.49024 + 0.48465I
u = 0.877439 0.744862I
a = 0.544210 + 0.050945I
b = 1.311880 + 0.378892I
1.91067 + 0.79824I 4.49024 + 0.48465I
u = 0.754878
a = 0.17299 + 1.94449I
b = 0.73677 1.98368I
6.04826 + 2.02988I 11.01951 3.46410I
u = 0.754878
a = 0.17299 1.94449I
b = 0.73677 + 1.98368I
6.04826 2.02988I 11.01951 + 3.46410I
10
Solutions to I
u
2
1(vol +
1CS) Cusp shape
u = 0.754878
a = 0.55043 + 2.59824I
b = 0.425587 + 0.029583I
6.04826 2.02988I 11.01951 + 3.46410I
u = 0.754878
a = 0.55043 2.59824I
b = 0.425587 0.029583I
6.04826 + 2.02988I 11.01951 3.46410I
11
III. I
u
3
= hu
7
2u
6
+ 3u
5
2u
4
2u
3
+ 3u
2
+ b u 1, u
5
2u
4
+ 4u
3
4u
2
+ a + 2u, u
8
3u
7
+ 6u
6
7u
5
+ 4u
4
+ u
3
2u
2
+ 1i
(i) Arc colorings
a
4
=
0
u
a
11
=
1
0
a
1
=
1
u
2
a
8
=
u
5
+ 2u
4
4u
3
+ 4u
2
2u
u
7
+ 2u
6
3u
5
+ 2u
4
+ 2u
3
3u
2
+ u + 1
a
3
=
u
7
+ 4u
6
9u
5
+ 13u
4
11u
3
+ 3u
2
+ 3u 2
u
7
3u
6
+ 6u
5
7u
4
+ 4u
3
+ u
2
u
a
2
=
u
6
3u
5
+ 6u
4
7u
3
+ 4u
2
+ u 1
u
7
3u
6
+ 6u
5
7u
4
+ 4u
3
+ 2u
2
2u
a
7
=
u
7
+ 2u
6
4u
5
+ 4u
4
2u
3
+ u
2
u + 1
u
7
+ 2u
6
3u
5
+ 2u
4
+ 2u
3
3u
2
+ u + 1
a
6
=
u
7
+ 3u
6
6u
5
+ 7u
4
4u
3
u
2
+ 3u 1
u
5
+ 2u
4
3u
3
+ 3u
2
u
a
10
=
u
5
+ 2u
4
4u
3
+ 3u
2
u 1
u
6
+ 2u
5
4u
4
+ 3u
3
u
2
2u
a
5
=
u
7
+ 2u
6
4u
5
+ 3u
4
3u
2
+ 2u
2u
7
+ 4u
6
8u
5
+ 7u
4
3u
3
u
2
+ u + 1
a
9
=
u
2
u + 1
u
5
u
4
+ 3u
3
2u
2
+ u + 1
a
9
=
u
2
u + 1
u
5
u
4
+ 3u
3
2u
2
+ u + 1
(ii) Obstruction class = 1
(iii) Cusp Shapes = 4u
7
9u
6
+ 17u
5
15u
4
+ 5u
3
+ 8u
2
2u 5
12
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
u
8
+ 4u
6
u
5
+ 5u
4
u
3
+ 3u
2
u + 1
c
2
u
8
+ 8u
7
+ 26u
6
+ 45u
5
+ 49u
4
+ 35u
3
+ 17u
2
+ 5u + 1
c
3
, c
6
u
8
+ 4u
6
+ u
5
+ 5u
4
+ u
3
+ 3u
2
+ u + 1
c
4
, c
5
u
8
+ 5u
6
+ 8u
4
u
3
+ 5u
2
2u + 1
c
7
u
8
+ u
7
u
6
u
5
+ u
4
2u
3
u
2
+ 2u + 1
c
8
u
8
u
7
+ 4u
6
5u
5
+ 3u
4
7u
3
+ 7u
2
2u + 1
c
9
u
8
+ 5u
6
+ 8u
4
+ u
3
+ 5u
2
+ 2u + 1
c
10
u
8
u
7
u
6
+ u
5
+ u
4
+ 2u
3
u
2
2u + 1
c
11
u
8
3u
7
+ 6u
6
7u
5
+ 4u
4
+ u
3
2u
2
+ 1
13
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
3
, c
6
y
8
+ 8y
7
+ 26y
6
+ 45y
5
+ 49y
4
+ 35y
3
+ 17y
2
+ 5y + 1
c
2
y
8
12y
7
+ 54y
6
3y
5
+ 57y
4
+ 43y
3
+ 37y
2
+ 9y + 1
c
4
, c
5
, c
9
y
8
+ 10y
7
+ 41y
6
+ 90y
5
+ 116y
4
+ 89y
3
+ 37y
2
+ 6y + 1
c
7
, c
10
y
8
3y
7
+ 5y
6
y
5
3y
4
4y
3
+ 11y
2
6y + 1
c
8
y
8
+ 7y
7
+ 12y
6
y
5
7y
4
19y
3
+ 27y
2
+ 10y + 1
c
11
y
8
+ 3y
7
+ 2y
6
+ y
5
+ 8y
4
5y
3
+ 12y
2
4y + 1
14
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
3
1(vol +
1CS) Cusp shape
u = 0.950543 + 0.460045I
a = 0.101607 0.618527I
b = 1.25100 + 0.69398I
1.36880 3.95256I 4.43548 + 5.62596I
u = 0.950543 0.460045I
a = 0.101607 + 0.618527I
b = 1.25100 0.69398I
1.36880 + 3.95256I 4.43548 5.62596I
u = 0.729400 + 0.802470I
a = 0.242048 + 0.778127I
b = 1.021380 0.213700I
1.80062 2.46434I 3.13589 + 4.70044I
u = 0.729400 0.802470I
a = 0.242048 0.778127I
b = 1.021380 + 0.213700I
1.80062 + 2.46434I 3.13589 4.70044I
u = 0.495908 + 0.252645I
a = 1.73117 2.40896I
b = 0.341560 + 1.033290I
5.09351 1.73790I 1.280471 + 0.424799I
u = 0.495908 0.252645I
a = 1.73117 + 2.40896I
b = 0.341560 1.033290I
5.09351 + 1.73790I 1.280471 0.424799I
u = 0.31597 + 1.53684I
a = 0.574823 0.324205I
b = 0.611947 0.066347I
5.52534 1.23864I 6.14816 + 0.14411I
u = 0.31597 1.53684I
a = 0.574823 + 0.324205I
b = 0.611947 + 0.066347I
5.52534 + 1.23864I 6.14816 0.14411I
15
IV. u-Polynomials
Crossings u-Polynomials at each crossing
c
1
(u
8
+ 4u
6
+ ··· u + 1)(u
12
+ u
11
+ ··· 28u + 19)
· (u
13
+ 10u
11
+ ··· 2u + 1)
c
2
(u
8
+ 8u
7
+ 26u
6
+ 45u
5
+ 49u
4
+ 35u
3
+ 17u
2
+ 5u + 1)
· (u
12
+ 15u
11
+ ··· + 1116u + 361)(u
13
+ 20u
12
+ ··· + 4u 1)
c
3
, c
6
(u
8
+ 4u
6
+ ··· + u + 1)(u
12
+ u
11
+ ··· 28u + 19)
· (u
13
+ 10u
11
+ ··· 2u + 1)
c
4
, c
5
(u
2
u + 1)
6
(u
8
+ 5u
6
+ 8u
4
u
3
+ 5u
2
2u + 1)
· (u
13
+ 7u
12
+ ··· + 52u + 8)
c
7
(u
8
+ u
7
+ ··· + 2u + 1)(u
12
+ 3u
11
+ ··· + 36u + 7)
· (u
13
+ u
12
+ ··· u + 1)
c
8
(u
8
u
7
+ 4u
6
5u
5
+ 3u
4
7u
3
+ 7u
2
2u + 1)
· (u
12
+ u
11
+ ··· + 72u + 61)(u
13
u
12
+ ··· 25u + 61)
c
9
(u
2
u + 1)
6
(u
8
+ 5u
6
+ 8u
4
+ u
3
+ 5u
2
+ 2u + 1)
· (u
13
+ 7u
12
+ ··· + 52u + 8)
c
10
(u
8
u
7
+ ··· 2u + 1)(u
12
+ 3u
11
+ ··· + 36u + 7)
· (u
13
+ u
12
+ ··· u + 1)
c
11
(u
3
+ u
2
1)
4
(u
8
3u
7
+ 6u
6
7u
5
+ 4u
4
+ u
3
2u
2
+ 1)
· (u
13
8u
12
+ ··· + 18u 4)
16
V. Riley Polynomials
Crossings Riley Polynomials at each crossing
c
1
, c
3
, c
6
(y
8
+ 8y
7
+ 26y
6
+ 45y
5
+ 49y
4
+ 35y
3
+ 17y
2
+ 5y + 1)
· (y
12
+ 15y
11
+ ··· + 1116y + 361)(y
13
+ 20y
12
+ ··· + 4y 1)
c
2
(y
8
12y
7
+ 54y
6
3y
5
+ 57y
4
+ 43y
3
+ 37y
2
+ 9y + 1)
· (y
12
29y
11
+ ··· + 1501032y + 130321)
· (y
13
56y
12
+ ··· + 56y 1)
c
4
, c
5
, c
9
(y
2
+ y + 1)
6
· (y
8
+ 10y
7
+ 41y
6
+ 90y
5
+ 116y
4
+ 89y
3
+ 37y
2
+ 6y + 1)
· (y
13
+ 11y
12
+ ··· 176y 64)
c
7
, c
10
(y
8
3y
7
+ 5y
6
y
5
3y
4
4y
3
+ 11y
2
6y + 1)
· (y
12
5y
11
+ ··· 708y + 49)(y
13
15y
12
+ ··· 17y 1)
c
8
(y
8
+ 7y
7
+ 12y
6
y
5
7y
4
19y
3
+ 27y
2
+ 10y + 1)
· (y
12
+ 23y
11
+ ··· 3964y + 3721)
· (y
13
+ 31y
12
+ ··· + 4407y 3721)
c
11
((y
3
y
2
+ 2y 1)
4
)(y
8
+ 3y
7
+ ··· 4y + 1)
· (y
13
+ 2y
12
+ ··· + 76y 16)
17