11n
120
(K11n
120
)
A knot diagram
1
Linearized knot diagam
5 1 8 11 2 9 10 5 1 4 7
Solving Sequence
1,5
2 3
6,9
10 8 7 11 4
c
1
c
2
c
5
c
9
c
8
c
7
c
11
c
4
c
3
, c
6
, c
10
Ideals for irreducible components
2
of X
par
I
u
1
= h2.10700 × 10
42
u
32
8.32114 × 10
42
u
31
+ ··· + 1.04181 × 10
43
b + 3.11913 × 10
43
,
3.50718 × 10
43
u
32
+ 1.44547 × 10
44
u
31
+ ··· + 1.04181 × 10
43
a 2.21436 × 10
44
,
u
33
4u
32
+ ··· + 20u + 1i
I
u
2
= h−u
7
u
6
+ 4u
5
+ 5u
4
2u
3
4u
2
+ b + u + 1, u
9
+ u
8
5u
7
6u
6
+ 6u
5
+ 9u
4
4u
3
6u
2
+ a + u + 2,
u
10
+ u
9
5u
8
6u
7
+ 6u
6
+ 9u
5
4u
4
6u
3
+ 2u
2
+ 2u 1i
* 2 irreducible components of dim
C
= 0, with total 43 representations.
1
The image of knot diagram is generated by the software Draw programme developed by An-
drew Bartholomew(http://www.layer8.co.uk/maths/draw/index.htm#Running-draw), where we modi-
fied some parts for our purpose(https://github.com/CATsTAILs/LinksPainter).
2
All coefficients of polynomials are rational numbers. But the coefficients are sometimes approximated
in decimal forms when there is not enough margin.
1
I. I
u
1
= h2.11 × 10
42
u
32
8.32 × 10
42
u
31
+ · · · + 1.04 × 10
43
b + 3.12 ×
10
43
, 3.51 × 10
43
u
32
+ 1.45 × 10
44
u
31
+ · · · + 1.04 × 10
43
a 2.21 ×
10
44
, u
33
4u
32
+ · · · + 20u + 1i
(i) Arc colorings
a
1
=
1
0
a
5
=
0
u
a
2
=
1
u
2
a
3
=
u
2
+ 1
u
2
a
6
=
u
u
3
+ u
a
9
=
3.36643u
32
13.8746u
31
+ ··· + 359.454u + 21.2550
0.202245u
32
+ 0.798722u
31
+ ··· 30.1211u 2.99396
a
10
=
3.56868u
32
14.6734u
31
+ ··· + 389.575u + 24.2489
0.202245u
32
+ 0.798722u
31
+ ··· 30.1211u 2.99396
a
8
=
3.36643u
32
13.8746u
31
+ ··· + 359.454u + 21.2550
0.242116u
32
+ 0.964369u
31
+ ··· 34.9325u 3.40285
a
7
=
2.39153u
32
+ 9.65565u
31
+ ··· 322.155u 32.6535
0.333028u
32
+ 1.39186u
31
+ ··· 27.7757u 1.13662
a
11
=
0.0378953u
32
0.0228553u
31
+ ··· 72.9307u 16.7529
0.414218u
32
+ 1.71120u
31
+ ··· 42.6953u 2.83658
a
4
=
1.41343u
32
+ 6.01740u
31
+ ··· 83.5671u + 7.88298
0.510036u
32
2.09654u
31
+ ··· + 58.5090u + 4.26540
a
4
=
1.41343u
32
+ 6.01740u
31
+ ··· 83.5671u + 7.88298
0.510036u
32
2.09654u
31
+ ··· + 58.5090u + 4.26540
(ii) Obstruction class = 1
(iii) Cusp Shapes = 1.43631u
32
5.67419u
31
+ ··· + 211.371u + 17.0575
2
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
5
u
33
+ 4u
32
+ ··· + 20u 1
c
2
u
33
+ 48u
32
+ ··· + 88u + 1
c
3
u
33
u
32
+ ··· + 864u 691
c
4
, c
10
u
33
11u
31
+ ··· u 1
c
6
u
33
+ 6u
32
+ ··· 2315u + 1751
c
7
u
33
+ 10u
32
+ ··· + 108u + 11
c
8
u
33
32u
31
+ ··· + 138u 193
c
9
u
33
8u
32
+ ··· + 8781u 1799
c
11
u
33
2u
32
+ ··· + 5u + 1
3
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
5
y
33
48y
32
+ ··· + 88y 1
c
2
y
33
124y
32
+ ··· 3924y 1
c
3
y
33
21y
32
+ ··· + 2800148y 477481
c
4
, c
10
y
33
22y
32
+ ··· + 11y 1
c
6
y
33
58y
32
+ ··· + 8486511y 3066001
c
7
y
33
+ 2y
32
+ ··· + 48y 121
c
8
y
33
64y
32
+ ··· 45418y 37249
c
9
y
33
36y
32
+ ··· + 44853489y 3236401
c
11
y
33
+ 2y
32
+ ··· 17y 1
4
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.403017 + 0.814677I
a = 0.107700 0.226447I
b = 0.856763 + 0.231979I
2.50185 1.42660I 0.894808 0.237180I
u = 0.403017 0.814677I
a = 0.107700 + 0.226447I
b = 0.856763 0.231979I
2.50185 + 1.42660I 0.894808 + 0.237180I
u = 1.032610 + 0.451125I
a = 0.534105 + 0.421030I
b = 0.605715 + 0.947070I
0.20621 + 3.24394I 3.32595 5.32169I
u = 1.032610 0.451125I
a = 0.534105 0.421030I
b = 0.605715 0.947070I
0.20621 3.24394I 3.32595 + 5.32169I
u = 0.617495 + 0.594331I
a = 0.228591 + 0.499559I
b = 0.686667 + 0.747422I
0.659531 0.792248I 4.14798 2.75904I
u = 0.617495 0.594331I
a = 0.228591 0.499559I
b = 0.686667 0.747422I
0.659531 + 0.792248I 4.14798 + 2.75904I
u = 0.709464 + 0.375757I
a = 0.54330 1.82882I
b = 1.28499 + 0.81921I
1.69477 3.95490I 4.65099 + 5.53433I
u = 0.709464 0.375757I
a = 0.54330 + 1.82882I
b = 1.28499 0.81921I
1.69477 + 3.95490I 4.65099 5.53433I
u = 0.788903 + 0.039022I
a = 1.048110 0.208486I
b = 0.390987 0.219065I
1.46450 0.11042I 7.61890 0.69071I
u = 0.788903 0.039022I
a = 1.048110 + 0.208486I
b = 0.390987 + 0.219065I
1.46450 + 0.11042I 7.61890 + 0.69071I
5
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 1.025720 + 0.722645I
a = 0.176298 0.905575I
b = 1.54028 + 0.15435I
2.74722 2.04706I 9.49316 + 3.23628I
u = 1.025720 0.722645I
a = 0.176298 + 0.905575I
b = 1.54028 0.15435I
2.74722 + 2.04706I 9.49316 3.23628I
u = 1.065340 + 0.919963I
a = 0.237358 0.585233I
b = 1.334700 + 0.176044I
0.59436 + 7.58146I 0. 6.03486I
u = 1.065340 0.919963I
a = 0.237358 + 0.585233I
b = 1.334700 0.176044I
0.59436 7.58146I 0. + 6.03486I
u = 0.577387 + 0.118189I
a = 1.51353 0.89064I
b = 0.632385 0.535325I
0.92676 + 3.03549I 5.42554 8.81658I
u = 0.577387 0.118189I
a = 1.51353 + 0.89064I
b = 0.632385 + 0.535325I
0.92676 3.03549I 5.42554 + 8.81658I
u = 1.64269 + 0.08860I
a = 1.325930 0.361396I
b = 1.159390 + 0.130829I
8.66188 + 2.58631I 0
u = 1.64269 0.08860I
a = 1.325930 + 0.361396I
b = 1.159390 0.130829I
8.66188 2.58631I 0
u = 0.083136 + 0.281660I
a = 1.76082 + 0.45809I
b = 0.590245 + 0.696368I
0.08685 1.51365I 1.21011 + 3.17114I
u = 0.083136 0.281660I
a = 1.76082 0.45809I
b = 0.590245 0.696368I
0.08685 + 1.51365I 1.21011 3.17114I
6
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 1.71660
a = 1.37178
b = 1.15039
10.7048 0
u = 1.83781 + 0.30594I
a = 0.936033 0.283350I
b = 1.307470 + 0.126378I
9.28497 3.68135I 0
u = 1.83781 0.30594I
a = 0.936033 + 0.283350I
b = 1.307470 0.126378I
9.28497 + 3.68135I 0
u = 1.86212 + 0.06903I
a = 1.061290 0.082463I
b = 1.269770 + 0.034873I
11.16570 + 0.07120I 0
u = 1.86212 0.06903I
a = 1.061290 + 0.082463I
b = 1.269770 0.034873I
11.16570 0.07120I 0
u = 1.86596 + 0.26633I
a = 1.240120 0.046944I
b = 1.72861 1.20268I
9.6038 12.7751I 0
u = 1.86596 0.26633I
a = 1.240120 + 0.046944I
b = 1.72861 + 1.20268I
9.6038 + 12.7751I 0
u = 0.0996406 + 0.0510585I
a = 5.49416 + 8.68590I
b = 0.746822 0.713371I
3.57986 4.96677I 0.77431 + 5.63197I
u = 0.0996406 0.0510585I
a = 5.49416 8.68590I
b = 0.746822 + 0.713371I
3.57986 + 4.96677I 0.77431 5.63197I
u = 1.87441 + 0.23423I
a = 1.251320 0.104385I
b = 1.86854 1.38190I
13.1119 + 6.5830I 0
7
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 1.87441 0.23423I
a = 1.251320 + 0.104385I
b = 1.86854 + 1.38190I
13.1119 6.5830I 0
u = 1.95662 + 0.23174I
a = 1.43425 0.24933I
b = 2.99143 2.15365I
7.19656 0.44528I 0
u = 1.95662 0.23174I
a = 1.43425 + 0.24933I
b = 2.99143 + 2.15365I
7.19656 + 0.44528I 0
8
II. I
u
2
= h−u
7
u
6
+ 4u
5
+ 5u
4
2u
3
4u
2
+ b + u + 1, u
9
+ u
8
+ · · · + a +
2, u
10
+ u
9
+ · · · + 2u 1i
(i) Arc colorings
a
1
=
1
0
a
5
=
0
u
a
2
=
1
u
2
a
3
=
u
2
+ 1
u
2
a
6
=
u
u
3
+ u
a
9
=
u
9
u
8
+ 5u
7
+ 6u
6
6u
5
9u
4
+ 4u
3
+ 6u
2
u 2
u
7
+ u
6
4u
5
5u
4
+ 2u
3
+ 4u
2
u 1
a
10
=
u
9
u
8
+ 4u
7
+ 5u
6
2u
5
4u
4
+ 2u
3
+ 2u
2
1
u
7
+ u
6
4u
5
5u
4
+ 2u
3
+ 4u
2
u 1
a
8
=
u
9
u
8
+ 5u
7
+ 6u
6
6u
5
9u
4
+ 4u
3
+ 6u
2
u 2
u
7
+ u
6
4u
5
5u
4
+ u
3
+ 4u
2
1
a
7
=
2u
9
2u
8
+ 10u
7
+ 12u
6
11u
5
18u
4
+ 4u
3
+ 11u
2
u 3
u
7
+ u
6
4u
5
5u
4
+ u
3
+ 4u
2
+ u 1
a
11
=
u
9
5u
7
u
6
+ 6u
5
+ 2u
4
2u
3
+ u
2
1
u
8
+ u
7
3u
6
5u
5
3u
4
+ 3u
3
+ 4u
2
2
a
4
=
u
9
+ 2u
8
4u
7
10u
6
+ 10u
4
+ 4u
3
4u
2
2u + 1
u
8
+ 5u
6
+ u
5
7u
4
2u
3
+ 6u
2
+ u 2
a
4
=
u
9
+ 2u
8
4u
7
10u
6
+ 10u
4
+ 4u
3
4u
2
2u + 1
u
8
+ 5u
6
+ u
5
7u
4
2u
3
+ 6u
2
+ u 2
(ii) Obstruction class = 1
(iii) Cusp Shapes = u
9
7u
8
+ 29u
6
+ 19u
5
14u
4
12u
3
+ 4u
2
3u 3
9
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
u
10
+ u
9
5u
8
6u
7
+ 6u
6
+ 9u
5
4u
4
6u
3
+ 2u
2
+ 2u 1
c
2
u
10
+ 11u
9
+ ··· + 8u + 1
c
3
u
10
2u
8
+ 3u
7
+ u
5
6u
4
+ 9u
3
6u
2
+ 2u 1
c
4
u
10
+ u
9
4u
8
3u
7
+ 6u
6
+ 3u
5
3u
4
+ u
3
u
2
u + 1
c
5
u
10
u
9
5u
8
+ 6u
7
+ 6u
6
9u
5
4u
4
+ 6u
3
+ 2u
2
2u 1
c
6
u
10
7u
9
+ 20u
8
33u
7
+ 37u
6
31u
5
+ 21u
4
12u
3
+ 7u
2
3u + 1
c
7
u
10
+ 3u
9
+ 2u
8
5u
7
12u
6
12u
5
6u
4
u
3
+ 2u
2
+ 2u + 1
c
8
u
10
u
9
5u
8
6u
7
+ 4u
6
+ 21u
5
+ 31u
4
+ 28u
3
+ 17u
2
+ 6u + 1
c
9
u
10
+ 3u
9
u
8
u
7
+ 3u
6
3u
4
u
3
u 1
c
10
u
10
u
9
4u
8
+ 3u
7
+ 6u
6
3u
5
3u
4
u
3
u
2
+ u + 1
c
11
u
10
+ u
9
+ u
7
+ 3u
6
3u
4
+ u
3
+ u
2
3u 1
10
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
5
y
10
11y
9
+ ··· 8y + 1
c
2
y
10
23y
9
+ ··· + 8y + 1
c
3
y
10
4y
9
+ 4y
8
21y
7
+ 6y
6
33y
5
+ 10y
4
13y
3
+ 12y
2
+ 8y + 1
c
4
, c
10
y
10
9y
9
+ 34y
8
69y
7
+ 74y
6
27y
5
23y
4
+ 23y
3
3y
2
3y + 1
c
6
y
10
9y
9
+ 12y
8
y
7
+ 9y
6
+ 41y
5
+ 57y
4
+ 38y
3
+ 19y
2
+ 5y + 1
c
7
y
10
5y
9
+ 10y
8
13y
7
+ 10y
6
12y
5
12y
4
y
3
4y
2
+ 1
c
8
y
10
11y
9
+ ··· 2y + 1
c
9
y
10
11y
9
+ 13y
8
13y
7
+ 21y
6
16y
5
+ 9y
4
7y
3
+ 4y
2
y + 1
c
11
y
10
y
9
+ 4y
8
7y
7
+ 9y
6
16y
5
+ 21y
4
13y
3
+ 13y
2
11y + 1
11
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
2
1(vol +
1CS) Cusp shape
u = 0.866197 + 0.578531I
a = 0.067855 + 1.111740I
b = 0.877449 + 0.215591I
3.01759 3.09606I 0.30900 + 2.81871I
u = 0.866197 0.578531I
a = 0.067855 1.111740I
b = 0.877449 0.215591I
3.01759 + 3.09606I 0.30900 2.81871I
u = 1.015340 + 0.405643I
a = 0.166016 + 0.744959I
b = 0.548989 0.533884I
2.52872 + 6.76916I 1.54858 6.21981I
u = 1.015340 0.405643I
a = 0.166016 0.744959I
b = 0.548989 + 0.533884I
2.52872 6.76916I 1.54858 + 6.21981I
u = 0.798561 + 0.168530I
a = 0.400296 + 0.421539I
b = 0.584842 0.825867I
1.07490 2.24450I 6.05768 + 4.70336I
u = 0.798561 0.168530I
a = 0.400296 0.421539I
b = 0.584842 + 0.825867I
1.07490 + 2.24450I 6.05768 4.70336I
u = 0.496273 + 0.300649I
a = 0.97776 + 1.19364I
b = 0.388447 + 0.692276I
0.68101 + 1.88435I 5.02064 2.89096I
u = 0.496273 0.300649I
a = 0.97776 1.19364I
b = 0.388447 0.692276I
0.68101 1.88435I 5.02064 + 2.89096I
u = 1.76945
a = 1.20430
b = 1.03466
10.1434 1.94620
u = 1.94286
a = 1.42816
b = 3.12836
7.30701 11.0740
12
III. u-Polynomials
Crossings u-Polynomials at each crossing
c
1
(u
10
+ u
9
5u
8
6u
7
+ 6u
6
+ 9u
5
4u
4
6u
3
+ 2u
2
+ 2u 1)
· (u
33
+ 4u
32
+ ··· + 20u 1)
c
2
(u
10
+ 11u
9
+ ··· + 8u + 1)(u
33
+ 48u
32
+ ··· + 88u + 1)
c
3
(u
10
2u
8
+ 3u
7
+ u
5
6u
4
+ 9u
3
6u
2
+ 2u 1)
· (u
33
u
32
+ ··· + 864u 691)
c
4
(u
10
+ u
9
4u
8
3u
7
+ 6u
6
+ 3u
5
3u
4
+ u
3
u
2
u + 1)
· (u
33
11u
31
+ ··· u 1)
c
5
(u
10
u
9
5u
8
+ 6u
7
+ 6u
6
9u
5
4u
4
+ 6u
3
+ 2u
2
2u 1)
· (u
33
+ 4u
32
+ ··· + 20u 1)
c
6
(u
10
7u
9
+ 20u
8
33u
7
+ 37u
6
31u
5
+ 21u
4
12u
3
+ 7u
2
3u + 1)
· (u
33
+ 6u
32
+ ··· 2315u + 1751)
c
7
(u
10
+ 3u
9
+ 2u
8
5u
7
12u
6
12u
5
6u
4
u
3
+ 2u
2
+ 2u + 1)
· (u
33
+ 10u
32
+ ··· + 108u + 11)
c
8
(u
10
u
9
5u
8
6u
7
+ 4u
6
+ 21u
5
+ 31u
4
+ 28u
3
+ 17u
2
+ 6u + 1)
· (u
33
32u
31
+ ··· + 138u 193)
c
9
(u
10
+ 3u
9
u
8
u
7
+ 3u
6
3u
4
u
3
u 1)
· (u
33
8u
32
+ ··· + 8781u 1799)
c
10
(u
10
u
9
4u
8
+ 3u
7
+ 6u
6
3u
5
3u
4
u
3
u
2
+ u + 1)
· (u
33
11u
31
+ ··· u 1)
c
11
(u
10
+ u
9
+ ··· 3u 1)(u
33
2u
32
+ ··· + 5u + 1)
13
IV. Riley Polynomials
Crossings Riley Polynomials at each crossing
c
1
, c
5
(y
10
11y
9
+ ··· 8y + 1)(y
33
48y
32
+ ··· + 88y 1)
c
2
(y
10
23y
9
+ ··· + 8y + 1)(y
33
124y
32
+ ··· 3924y 1)
c
3
(y
10
4y
9
+ 4y
8
21y
7
+ 6y
6
33y
5
+ 10y
4
13y
3
+ 12y
2
+ 8y + 1)
· (y
33
21y
32
+ ··· + 2800148y 477481)
c
4
, c
10
(y
10
9y
9
+ 34y
8
69y
7
+ 74y
6
27y
5
23y
4
+ 23y
3
3y
2
3y + 1)
· (y
33
22y
32
+ ··· + 11y 1)
c
6
(y
10
9y
9
+ 12y
8
y
7
+ 9y
6
+ 41y
5
+ 57y
4
+ 38y
3
+ 19y
2
+ 5y + 1)
· (y
33
58y
32
+ ··· + 8486511y 3066001)
c
7
(y
10
5y
9
+ 10y
8
13y
7
+ 10y
6
12y
5
12y
4
y
3
4y
2
+ 1)
· (y
33
+ 2y
32
+ ··· + 48y 121)
c
8
(y
10
11y
9
+ ··· 2y + 1)(y
33
64y
32
+ ··· 45418y 37249)
c
9
(y
10
11y
9
+ 13y
8
13y
7
+ 21y
6
16y
5
+ 9y
4
7y
3
+ 4y
2
y + 1)
· (y
33
36y
32
+ ··· + 44853489y 3236401)
c
11
(y
10
y
9
+ 4y
8
7y
7
+ 9y
6
16y
5
+ 21y
4
13y
3
+ 13y
2
11y + 1)
· (y
33
+ 2y
32
+ ··· 17y 1)
14